7 КЛАСС Вычисли и запиши ответ Дана функция f(x) = 5, если х— 3; х, если — 3 < x < 2; x — 3, если x > 2. Найди: 1) f(1); 2) f (2); 3) f(-2); 4) f (3); 5) f(-4, 1). ответ:1
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]
Объяснение:
Сөйлем мүшелері – сөздердің мағыналық тұрғыдан өзара тіркесуі нәтижесінде синтаксистік қызметте жұмсалатын сөйлемнің дербес бөлшектері. Сөйлемдегі сөздер бір-бірімен мағыналық байланыста болады, сол байланыс негізінде грамматикалық мағынаға ие болған сөздер, сөз тіркестері сөйлем мүшелері қызметін атқарады. Сөйлем мүшелері қызметінде сөйлемнің дұрыс құрылуының, әр сөздің өз орнында жұмсалуы мен ой желісі, стильдік жағынан нақты болуының орны ерекше. Сөйлем мүшелері үлкен екі топқа бөлінеді:
тұрлаулы мүшелер (бастауыш, баяндауыш);
тұрлаусыз мүшелер (анықтауыш, толықтауыш, пысықтауыш).
Тұрлаулы мүшелер сөйлемнің негізгі арқауы саналады, предикативтік қатынас негізінде ең кіші сөйлем ретінде жұмсалып, олардың негізінде тақырып, рема, тіпті есімді, етістікті сөз тіркестері айқындалады.[1]
Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.