Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Решение системы уравнений х=2
у=2
Да, является.
Объяснение:
Запишите систему уравнений 2х-у=2 и 3х+2у=10 является ли пара чисел (2;2) решением этой системы?
Решить систему уравнений:
2х-у=2
3х+2у=10
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=2-2х
у=2х-2
3х+2(2х-2)=10
3х+4х-4=10
7х=10+4
7х=14
х=2
Теперь вычислим у:
у=2х-2
у=2*2-2=2
у=2
Решение системы уравнений х=2
у=2
Да, является.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: