Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
Объяснение:
1) log₂(x-1)=1
используем определение логарифма -
логарифмом числа b по основанию a ( logₐb ) называется такое число n, что b=aⁿ, у нас а =2, b = (x-1), n = 1 подставим наши значения
(х-1)=2¹ ⇒ х-1=2⇒х=3 отрезок (0;3]
2) log₂(x-1)≤0
по определению логарифма b >0, у нас х-1 > 0 ⇒ х > 1 это первое условие
ищем второе. сначала решаем уравнение log₂(x-1)=0
используем свойство логарифма logₐ1=0 имеем х-1 = 1 ⇒ х=2
на отрезке (1;2] проверим знак логарифма
это наш отрезок (1;2]
3)
x=3; y=-1
4)
log₂(4-x)≤1
4-x>1 ⇒ x < 4
log₂(4-x)=1 ⇒ 2=4-x ⇒x=2
[2;4)
5)
log₇log₂log₇49
раскручиваем справа
log₇log₂log₇49=log₇log₂2=log₇1=0
log₁₂3+log₁₂4= log₁₂3*4=log₁₂12=1
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4