Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.
Раскрываем скобки и подводим подобные слагаемые:
6х^2 - 3х + 8х - 4 - 6x^2 = 16;
5х - 4 = 16;
5х = 16 + 4;
5х = 20;
х = 20/5 = 4.
2) (1 - 2y)(1 - 3y) = (6y - 1)y - 1.
Раскрываем скобки:
1 - 2у - 3у + 6у^2 = 6у^2 - у - 1;
1 - 5у + 6у^2 = 6у^2 - у - 1;
Перенесем буквенные одночлены в левую часть, а числовые - в правую:
-5у + 6у^2 - 6у^2 + у = -1 - 1;
-4У = -2;
У = (-2)/(-4) = 1/2 = 0,5.
3) 7 + 2x^2 = 2(x + 1)(x + 3).
Раскрываем скобки:
7 + 2x^2 = 2(x^2 + x + 3x + 3);
7 + 2x^2 = 2(x^2 + 4x + 3);
7 + 2x^2 = 2x^2 + 8х + 6;
перенесем буквенные одночлены в левую часть, а числовые - в правую:
2x^2 - 2x^2 - 8х = 6 - 7;
-8х = -1;
х = 1/8.
4) (y + 4)(y + 1) = y - (y - 2)(2 - y).
Раскрываем скобки и подводим подобные слагаемые:
y^2 + 4y + у + 4 = y - (2y - 4 - y^2 + 2у);
y^2 + 5у + 4 = y - (4y - 4 - y^2);
y^2 + 5у + 4 = y - 4y + 4 + y^2;
y^2 + 5у + 4 = -3y + 4 + y^2;
перенесем буквенные одночлены в левую часть уравнения, а числовые - в правую:
y^2 + 5у + 3y - y^2 = 4 - 4;
8у = 0;
у = 0.
Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.