a) y = 3x² - 6x + 1 - квадратичная функция, график - парабола, ветви направлены вверх ( а = 3 > 0). Промежутки монотонности отделяются координатой х вершины параболы.
А) Эта вероятность равна произведению вероятности вытащить в первой попытке 1 белый шар (всего их 3) из 12 и во второй попытке 1 белый шар (их осталось 2) из 11 1/4 2/11=2/44 Б) ) Эта вероятность равна произведению вероятности вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 чёрный шар (их осталось 8) из 11 3/4 8/11=24/44 В) Эта вероятность равна сумме двух вероятностей: Р1 - вероятность вытащить в первой попытке 1 белый шар (всего их 3) из 12 и во второй попытке 1 чёрный шар (их по прежнему 9) из 11 1/4 9/11=9/44 и Р2 - вероятность вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 белый шар (их по прежнему 3) из 11 3/4 3/11=9/44 Вероятность вытащить два шара разного цвета равна 9/44+9/44=18/44 Обратите внимание, что вероятность всех трёх событий (2 белых или 2 черных или 2 разноцветных) в сумме составляет 1.
a) y = 3x² - 6x + 1 - квадратичная функция, график - парабола, ветви направлены вверх ( а = 3 > 0). Промежутки монотонности отделяются координатой х вершины параболы.
x∈ (-∞; 1] - функция убывает
x∈ [1; +∞) - функция возрастает
---------------------------------------------------------------------
б) y = x⁹ - 9x
Для нахождения промежутков монотонности нужно найти экстремумы функции с первой производной.
y' = (x⁹)' - (9x)' = 9x⁸ - 9 = 9(x⁸ - 1)
9(x⁸ - 1) = 0; ⇒ x⁸ = 1; ⇒ x₁ = 1; x₂ = -1
Интервалы знакопостоянства для производной функции y'
+++++++++ [-1] ------------ [1] +++++++++> x
/ \ /
x∈ (-∞; -1] ∪ [1; +∞) - функция возрастает
x∈ [-1; 1] - функция убывает
Б) ) Эта вероятность равна произведению вероятности вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 чёрный шар (их осталось 8) из 11 3/4 8/11=24/44
В) Эта вероятность равна сумме двух вероятностей: Р1 - вероятность вытащить в первой попытке 1 белый шар (всего их 3) из 12 и во второй попытке 1 чёрный шар (их по прежнему 9) из 11 1/4 9/11=9/44 и Р2 - вероятность вытащить в первой попытке 1 чёрный шар (всего их 9) из 12 и во второй попытке 1 белый шар (их по прежнему 3) из 11 3/4 3/11=9/44 Вероятность вытащить два шара разного цвета равна 9/44+9/44=18/44 Обратите внимание, что вероятность всех трёх событий (2 белых или 2 черных или 2 разноцветных) в сумме составляет 1.