Решить неравенства:
1)
определим ОДЗ:
т.е. неравентсво определено на всем множестве R
Подкоренное выражение всегда ≥0. А значит решением данное неравенства будет множество R
ответ: x∈R
2)
Значит неравенство имеет смысл если х∈[-1;+∞)
Но при этом √x+1 ≥0 и ни когда не будет отрицательным числом, а значит неравенство не выполнимо
ответ: x∈∅
3)
При допустимых х выражение √3-x>0; и значит дробь тоже принимает положительные значения
ответ: x∈(-∞;3)
4)
значит допустимые значения х∈[1.5; +∞)
т.к. с обеих сторон стоят положительные числа то можем данное неравенство возвести в квадрат
по решению х<3
совместим с ОДЗ
ответ: x∈[1.5; 3)
Решить неравенства:
1)
определим ОДЗ:
т.е. неравентсво определено на всем множестве R
Подкоренное выражение всегда ≥0. А значит решением данное неравенства будет множество R
ответ: x∈R
2)
определим ОДЗ:
Значит неравенство имеет смысл если х∈[-1;+∞)
Но при этом √x+1 ≥0 и ни когда не будет отрицательным числом, а значит неравенство не выполнимо
ответ: x∈∅
3)
определим ОДЗ:
При допустимых х выражение √3-x>0; и значит дробь тоже принимает положительные значения
ответ: x∈(-∞;3)
4)
определим ОДЗ:
значит допустимые значения х∈[1.5; +∞)
т.к. с обеих сторон стоят положительные числа то можем данное неравенство возвести в квадрат
по решению х<3
совместим с ОДЗ
ответ: x∈[1.5; 3)