5. а) рассчитайте значение х, с которой числовая последовательность :
x+1; 4x-1; x^2+3 является арифметической прогрессией
b) решите уравнение 5+8+11+...(3х+2)=670
с) рассчитайте х значение, с которой 3 числовых последавателньостей 36; 7*3^x; 2*3^x являются арифметической прогрессией
у = kx+b
A(5; 3)
B(-3; -1)
Подставим координаты точек А и В в уравнение прямой вместо х и у, но точек две, поэтому уравнений получим тоже два с двумя неизвестными k и b
Составим систему уравнений и решим её:
{5k+b=3
{-3k+b=-1
вычтем из верхнего уравнения нижнее, получим
8k+0=4
k = 2
подставим k=2 в любое уравнение системы, например, в верхнее, получим:
5*2 + b =3
10+b = 3
b = 7
Запишем уравнение прямой:
у = 2х+7, которая проходит через данные точки А и В.
Далее, просили уравнение прямой, которая
1) параллельная данной, а значит её коэффициент k одинаковые, т е k = 2 и
2) пересекает ось абсцисс в точке (-10; 0)
0 = 2*(-10) + b
0 = -20 + b
b = 20
y = kx+b
k= 2, b= 20
y = 2x+20 - искомая формула прямой
1. Интегрирование ведется по множеству 0 < x < 1, 0 < y < √(2x-x^2)
√(2x - x^2) принимает значения от 0 (x = 0) до 1 (x = 1), так что множество интегрирования является частью множеста 0 < x < 1, 0 < y < 1, где выполняется y < √(2x - x^2)
0 < y < √(2x - x^2) при 0 < x < 1 эквивалентно 0 < y^2 < 2x - x^2 = 1 - (1 - 2x + x^2) = 1 - (x-1)^2
т.е. (x-1)^2 < 1 - y^2
|x - 1| = 1 - x < √(1 - y^2)
x > 1 - √(1 - y^2)
ответ: интеграл от 0 до 1 по dy интеграл от 1 - √(1-y^2) до 1 f(x,y) по dx
2. 0 < y < 1, -√(1-y^2) < x < 1-y
-√(1-y^2) принимает значения от -1 (y = 0) до 0 (y = 1)
1 - y принимает значения от 0 (y = 1) до 1 (y = 0)
Т.е. область интегрирования: -1 < x < 1, 0 < y < 1, где одновременно -√(1-y^2) < x и x < 1-y
x < 1 - y ~ y < 1 - x
-√(1-y^2) < x :
1) При x > 0 - любой y (от 0 до 1)
2) При x < 0:
√(1-y^2) > (-x) > 0
1 - y^2 > x^2
0 < y^2 < 1 - x^2
0 < y < √(1 - x^2)
Т.е. исходные условия эквивалентны тому, что:
при x >= 0: y < 1 - x
при x < 0: одновременно y < √(1 - x^2) и y < 1 - x, но т.к. √(1 - x^2) <= 1 - x при x < 0, достаточно условия y < √(1 - x^2)
ответ: (интеграл от -1 до 0 по dx интеграл от 0 до √(1 - x^2) f(x,y) по dy) + (интеграл от 0 до 1 по dx интеграл от 0 до 1 - x f(x,y) по dy)
Или, что то же самое, интеграл от -1 до 1 по dx от 0 до min{ 1 - x, √(1 - x^2) } f(x,y) по dy