Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Решила это за минуту, зная что если у нас коэффициент k равен -2, то функция будет убывающей, значит будет проходить через 2 и 4 плоскости нашего графика, а показатель b в нашем случае +3, значит функция будет поднята от точки (0,0) на 3 деления вверх. И под все эти параметры подходит только номер г. Однако пойдем более точным путем:
Подставим в нашу функцию какие-нибудь значения х, узнаем какой и где при этих х будет y.
х = 1 (просто рандомная точка для проверки)
-2 * 1 + 3 = 1 (это мы нашли у)
точка (1;1), здесь уже отпадают графики б,в.
x = 3
-2 * 3 + 3 = -3
отпадает вариант с оставшимся графиком а, потому что там при точке х =3, у = 0
ну и проверим х = 0
-2 * 0 + 3 = 3 точка (0;3) у нас имеется только в графике г.
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
y = kx + b
Решила это за минуту, зная что если у нас коэффициент k равен -2, то функция будет убывающей, значит будет проходить через 2 и 4 плоскости нашего графика, а показатель b в нашем случае +3, значит функция будет поднята от точки (0,0) на 3 деления вверх. И под все эти параметры подходит только номер г. Однако пойдем более точным путем:
Подставим в нашу функцию какие-нибудь значения х, узнаем какой и где при этих х будет y.
х = 1 (просто рандомная точка для проверки)
-2 * 1 + 3 = 1 (это мы нашли у)
точка (1;1), здесь уже отпадают графики б,в.
x = 3
-2 * 3 + 3 = -3
отпадает вариант с оставшимся графиком а, потому что там при точке х =3, у = 0
ну и проверим х = 0
-2 * 0 + 3 = 3 точка (0;3) у нас имеется только в графике г.
все верно! это график г.