На картинке вы видите часть большой решётки, составленной из шестиугольников, у которых все стороны равны и углы тоже. Все вершины шестиугольников раскрасили, каждую - в чёрный или белый цвет. Докажите, что найдутся три одноцветные вершины, образующие равносторонний треугольник.
Допустим, возможна такая раскраска, что не образует одноцветного треугольника. Исследуем это допущение.
Рассмотрим произвольный треугольник в любом из 6-угольников, образованный тремя вершинами (через одну) 6-угольника мозаики.
Очевидно, что из трех вершин такого треугольника две будут одинакового цвета.
Пусть, это будет треугольник (123), а "одинаковый цвет" - черный. (здесь и далее см. рисунок)
Допустим, точки 1 и 2 - черного цвета. Тогда очевидно, что т.3 - белая, ибо иначе будет одноцветный треугольник (123). По той же причине, белая будет т.4 (треугольник (124) не может быть одноцветным).
Однако вследствие того что точки 3 и 4 белые, точка 5 - должна быть черной (иначе треугольник (345) будет одноцветным). Далее, во избежание одноцветного треугольника (156) точку 6 нужно делать белой.
И тут мы приходим к противоречию. Точка 7 (на рисунке означена крестиком)не может быть "покрашена" в соответствии с нашим допущением
- белый цвет даст нам одноцветный ∆(637)
- черный цвет даст нам одноцветный ∆(527)
Мы пришли к противоречию. Следовательно, предположение неверно, и при любой "раскраске" всегда найдутся три одноцветные вершины, образующие равносторонний треугольник
При выборе других 2 вершин одного цвета или белого цвета вместо черного - доказательство абсолютно аналогично.
Объяснение:
См. на фотографии.
Допустим, возможна такая раскраска, что не образует одноцветного треугольника. Исследуем это допущение.
Рассмотрим произвольный треугольник в любом из 6-угольников, образованный тремя вершинами (через одну) 6-угольника мозаики.
Очевидно, что из трех вершин такого треугольника две будут одинакового цвета.
Пусть, это будет треугольник (123), а "одинаковый цвет" - черный. (здесь и далее см. рисунок)
Допустим, точки 1 и 2 - черного цвета. Тогда очевидно, что т.3 - белая, ибо иначе будет одноцветный треугольник (123). По той же причине, белая будет т.4 (треугольник (124) не может быть одноцветным).
Однако вследствие того что точки 3 и 4 белые, точка 5 - должна быть черной (иначе треугольник (345) будет одноцветным). Далее, во избежание одноцветного треугольника (156) точку 6 нужно делать белой.
И тут мы приходим к противоречию. Точка 7 (на рисунке означена крестиком)не может быть "покрашена" в соответствии с нашим допущением
- белый цвет даст нам одноцветный ∆(637)
- черный цвет даст нам одноцветный ∆(527)
Мы пришли к противоречию. Следовательно, предположение неверно, и при любой "раскраске" всегда найдутся три одноцветные вершины, образующие равносторонний треугольник
При выборе других 2 вершин одного цвета или белого цвета вместо черного - доказательство абсолютно аналогично.
Ч.т.д.