4. При паралельному перенесенні точка Р(-1; -3) переходить у точку Р’(-5; 5). При цьому ж паралельному перенесенні точка С(-2; 0) переходить у точку С’ с координатами: А) (-4; 8) Б) (-1; 3) В) (-6; 8) Г) (6; -8) Д) інша відповідь
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1
Пусть х км/ч - скорость плота, тогда (х+12) км/ч - скорость моторной лодки.
5ч 20 мин=5целых 1/3 ч
Составим уравнение
20/(х+12)=(20/х)-5целых 1/3
20/(х+12)=(20/х)-(16/3)
20*3х=20*3(х+12)-16х*(х+12)
60х=60х+720-16х^2-192х
16х^2-192х-720=0
Разделим всё на 16
х^2+12х-45=0
Решаем квадратное уравнение
Дискриминант уравнения = b 2 - 4ac = 324
х1,2=(-b+-(корень из b 2 - 4ac )/2а
х1,2=(-12+-(корень из 324-4*1*(-45))/2*1
х1,2=(-12+-18)/2
х1=(-12+18)/2=3
х2=(-12-18)/2=-30/2=-15
Отрицательный корень убираем
ответ: скорость плота 3 км/ч
Проверка:
20/(3+12)=(20/3)-16/3
20/15=4/3
4/3=4/3