4) (12х^5/25) × (15/8х^2) = (3х^3/5) × (3/2) = 9х^3/10 (сокращаем 12х^5 и 8х^2, сокращаем 25 и 15)
6) иксы сокращаем и умножаем = 3/4
8) (16х^5/35) × (5/8х^3) = 2х^2/7 (сокращаем 16х^5 и 8х^3, сокращаем 35 и 5)
10) (9/2а) × (5а/3) = 3/2 × 5 = 15/2 = 7,5 (сокращаем 9 и 3, сокращаем 5а и 2а)
12) (3/4а^3) × (16а^2/9) = (1/а) × (4/3) = 4/3а (сокращаем 3 и 9, сокращаем 16а^2 и 4а^2)
14) (15/3аб) × (12б^3/3) = (5/а) × 4б^2 = 20б^2/а (сокращаем 15 и 3, сокращаем 12б^3 и 3б)
15) (18/с^4) × (с^3/24) = (3/с) × (1/4) = 3/4с (сокращаем 18 и 24, сокращаем с^3 и с^3)
Решим данную задачу через вероятность противоположного события.
Найдем вероятность того, что наугад взятые три шара окажутся красными.
Вероятность вынуть один красный шар, равна 12/20=3/5.
Вероятность вынуть второй красный шар, равна 11/19.
Вероятность вынуть третий красный шар, равна 10/18=5/9.
По теореме умножения, вероятность вынуть три красных шара, равна p=\dfrac{3}{5} \cdot\dfrac{11}{19} \cdot\dfrac{5}{9} =\dfrac{11}{57}p=
5
3
⋅
19
11
9
=
57
Тогда вероятность того, что хоть один из 3 шара окажется белым, равна
p^*=1-p=1-\dfrac{11}{57} =\dfrac{46}{57}p
∗
=1−p=1−
46
4) (12х^5/25) × (15/8х^2) = (3х^3/5) × (3/2) = 9х^3/10 (сокращаем 12х^5 и 8х^2, сокращаем 25 и 15)
6) иксы сокращаем и умножаем = 3/4
8) (16х^5/35) × (5/8х^3) = 2х^2/7 (сокращаем 16х^5 и 8х^3, сокращаем 35 и 5)
10) (9/2а) × (5а/3) = 3/2 × 5 = 15/2 = 7,5 (сокращаем 9 и 3, сокращаем 5а и 2а)
12) (3/4а^3) × (16а^2/9) = (1/а) × (4/3) = 4/3а (сокращаем 3 и 9, сокращаем 16а^2 и 4а^2)
14) (15/3аб) × (12б^3/3) = (5/а) × 4б^2 = 20б^2/а (сокращаем 15 и 3, сокращаем 12б^3 и 3б)
15) (18/с^4) × (с^3/24) = (3/с) × (1/4) = 3/4с (сокращаем 18 и 24, сокращаем с^3 и с^3)
Решим данную задачу через вероятность противоположного события.
Найдем вероятность того, что наугад взятые три шара окажутся красными.
Вероятность вынуть один красный шар, равна 12/20=3/5.
Вероятность вынуть второй красный шар, равна 11/19.
Вероятность вынуть третий красный шар, равна 10/18=5/9.
По теореме умножения, вероятность вынуть три красных шара, равна p=\dfrac{3}{5} \cdot\dfrac{11}{19} \cdot\dfrac{5}{9} =\dfrac{11}{57}p=
5
3
⋅
19
11
⋅
9
5
=
57
11
Тогда вероятность того, что хоть один из 3 шара окажется белым, равна
p^*=1-p=1-\dfrac{11}{57} =\dfrac{46}{57}p
∗
=1−p=1−
57
11
=
57
46