ОДЗ {x²-x-3>0 {2x²+x-3>0 {x²-2≠0 1)x²-x-3>0 D=1+12=13 x1=(1-√13)/2 U x2=(1+√13)/2 x<(1-√13)/2 U x>(1+√13)/2 2)2x²+x-3>0 D=1+24=25 x1=(-1-5)4=-1,5 U x=(-1+5)/4=1 x<-1,5 U x>1 3)x²-2≠0 x²≠2 x≠-√2 U x≠√2 x∈(-∞;-1,5) U ((1+√13)/2;∞) log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4) [(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4 [(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0 (8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0 (-x^4-4x³-4x²)/4(x²-2)²≥0 -x²(x²+4x+4)/4(x²-2)²≥0 x²(x+2)²/4(x²-2)²≤0 x=0∉ОДЗ x=-2∉ОДЗ ответ нет решения
Точки построения графика: (0;0), (±1; ±1), (±2; ±8). График является нечетной.
Подставим координаты точки A(-5;125) в график уравнения, получим
Поскольку равенство не верно, то график функции y = x³ не проходит через точку A(-5;125), т.е. точка не принадлежит графику y = x³
Подставим теперь координаты точки B(4;64), получим
Поскольку равенство тождественно выполняется, то точка B принадлежит графику функции y = x³.
Подставим координаты точки C(-3;-27), имеем
Раз равенство тождественно выполняется, то точка C(-3;-27) принадлежит графику функции y = x³
{x²-x-3>0
{2x²+x-3>0
{x²-2≠0
1)x²-x-3>0
D=1+12=13
x1=(1-√13)/2 U x2=(1+√13)/2
x<(1-√13)/2 U x>(1+√13)/2
2)2x²+x-3>0
D=1+24=25
x1=(-1-5)4=-1,5 U x=(-1+5)/4=1
x<-1,5 U x>1
3)x²-2≠0
x²≠2
x≠-√2 U x≠√2
x∈(-∞;-1,5) U ((1+√13)/2;∞)
log(3)[(x²-x-3)(2x²+x-3)/(x²-2)²]≥log(3)(9/4)
[(x²-x-3)(2x²+x-3)/(x²-2)²]≥9/4
[(x²-x-3)(2x²+x-3)/(x²-2)²]-9/4≥0
(8x^4+4x³-12x²-8x³-4x²+12x-24x²+-12x+36-9x^4+36x²-36)/4(x²-2)²≥0
(-x^4-4x³-4x²)/4(x²-2)²≥0
-x²(x²+4x+4)/4(x²-2)²≥0
x²(x+2)²/4(x²-2)²≤0
x=0∉ОДЗ
x=-2∉ОДЗ
ответ нет решения