Арифметической прогрессией называется такая последовательность, у которой каждый ее член, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d,которое называется разностью прогрессии.
Для всех элементов прогрессии, начиная со второго выполнимо равенство:
Если d > 0, то прогрессия является возрастающей. Если d < 0, то прогрессия является убывающей.
Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов.
= + d = (+ d) + d = + 2d,
= + d = (+ 2d) + d = + 3d,
= + d(n-1) = + d(n-1) - формула n-го члена арифметической прогрессии.(n≥1)
Пример 3,6,9,12,15,18,21,24,27,30 — арифметическая прогрессия из десяти членов с шагом 3.
Свойства
1.
2.Если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.
3.Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии: . Обратное также верно, то есть это свойство является признаком арифметической прогрессии.Доказательство:
Обратное аналогично
4.Сумма n первых членов арифметической прогрессии может быть выражена формулами
Доказательство:Через сумму:
По индукции:
5.Сумма n последовательных членов арифметической прогрессии начиная с члена k:
6.Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:
Задача 1.При делении девятого члена арифметической прогрессии на второй член в частном получается 5, а при делении тринадцатого члена на шестой член в частном получается 2 и в остатке 5. Найти первый член и разность прогрессии.
Решение: …,- арифметическая прогрессия
: остаток 5)
Используя формулу n-го члена прогрессии получаем систему уравнений:
Откуда 4(2d-5)=3d,то 5d=20,то d=4
=3
ответ: d=4
Задача 2. Известно, что при любом n сумма Sn членов некоторой арифметической прогрессии выражается формулой Sn=4n²-3n. Найти три первых члена этой прогрессии.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение:
Арифметической прогрессией называется такая последовательность, у которой каждый ее член, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d,которое называется разностью прогрессии.
Для всех элементов прогрессии, начиная со второго выполнимо равенство:
Если d > 0, то прогрессия является возрастающей. Если d < 0, то прогрессия является убывающей.
Арифметическая прогрессия считается конечной, если рассматриваются только ее первые несколько членов.
= + d = (+ d) + d = + 2d,
= + d = (+ 2d) + d = + 3d,
= + d(n-1)
= + d(n-1) - формула n-го члена арифметической прогрессии.(n≥1)
Пример
3,6,9,12,15,18,21,24,27,30 — арифметическая прогрессия из десяти членов с шагом 3.
Свойства
1.
2.Если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.
3.Любой член арифметической прогрессии, начиная со второго, является средним арифметическим предыдущего и следующего члена прогрессии:
.
Обратное также верно, то есть это свойство является признаком арифметической прогрессии.Доказательство:
Обратное аналогично
4.Сумма n первых членов арифметической прогрессии может быть выражена формулами
Доказательство:Через сумму:
По индукции:
5.Сумма n последовательных членов арифметической прогрессии начиная с члена k:
6.Пример суммы арифметической прогрессии является сумма ряда натуральных чисел до n включительно:
Задача 1.При делении девятого члена арифметической прогрессии на второй член в частном получается 5, а при делении тринадцатого члена на шестой член в частном получается 2 и в остатке 5. Найти первый член и разность прогрессии.
Решение: …,- арифметическая прогрессия
: остаток 5)
Используя формулу n-го члена прогрессии получаем систему уравнений:
Откуда 4(2d-5)=3d,то 5d=20,то d=4
=3
ответ: d=4
Задача 2. Известно, что при любом n сумма Sn членов некоторой арифметической прогрессии выражается формулой Sn=4n²-3n. Найти три первых члена этой прогрессии.
Решение:
Пусть n=1 .
Пусть n=2 .
Так как ,то
ответ: ,,