1)64=4(в кубе);z(6степени)=(z(2степени))(в кубе).сокращаем степени,и тогда получится =4х*z(во второй степени) 2)действия происходят аналогично.а(8 степени)=(а(2 степени))(в 4 степени);b(12степени)=(b(3степени))(в 4 степени). сокращаем степени, и тогда получится =а(в 2 степени)b(3степени) 3)32=2(5 степени);х(10степени)=(х(2 степени))(в 5степени);у(20 степени)=(у(4степени))(в 5 степени);сокращаем степени получаем 2х(2степени)у(4степени) 4)а(12степени)=(а(2степени))(в 6степени);b(18степени)=(b(3степени))(в 6 степени) сокращаем степени и получаем ответ=а(2степени)b(3степени)
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8
2)действия происходят аналогично.а(8 степени)=(а(2 степени))(в 4 степени);b(12степени)=(b(3степени))(в 4 степени). сокращаем степени, и тогда получится =а(в 2 степени)b(3степени)
3)32=2(5 степени);х(10степени)=(х(2 степени))(в 5степени);у(20 степени)=(у(4степени))(в 5 степени);сокращаем степени получаем 2х(2степени)у(4степени)
4)а(12степени)=(а(2степени))(в 6степени);b(18степени)=(b(3степени))(в 6 степени) сокращаем степени и получаем ответ=а(2степени)b(3степени)
8
Объяснение:
Сложим два равенства, получим уравнение:
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8