В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
iragafieva
iragafieva
09.11.2021 08:39 •  Алгебра

3)РОЗВЯЖІТЬ СИСТЕМИ: а підстановки х+4у=-6 і 3х-у=8; б додавання 7х+3у=43 і 4х-3у=67; в)Графічним х+у=3 і 2х-у=3; (замість букв і має бути системна душка )

Показать ответ
Ответ:
али393
али393
14.03.2022 23:10

Ну \frac{x^n}{n} указывает на то, что надо бы производную брать для исследования этой функции, ибо она красивая получается.

f'(x)=x^4-x^3+x^2+x-2;

Далее, для исследования исходной функции на возрастание/убывание необходимо найти нули производной, то есть f'(x)=0;

x^4-x^3+x^2+x-2=0;

Сумма коэффициентов в уравнении равно 0, значит, x=1 - корень

Попробуем разложить выражение, заранее зная корень.

x^4-x^3+x^2+x-2=x^4-x^3+x^2-x+2x-2=\\ =x^3(x-1)+x(x-1)+2(x-1)=(x-1)(x^3+x+2)

Теперь нужно проанализировать правую скобку x^3+x+2=0;

Сумма коэффициентов при четных (2) и нечетных (1+1=2) степенях равна, значит, x=-1 - корень. x^3+x+2=x^3+x^2-x^2-x+2x+2=x^2(x+1)-x(x+1)+2(x+1)=\\ =(x+1)(x^2-x+2)

Осталась последняя скобка в разложении, найдем дискриминант уравнения

x^2-x+2=0; D=(-1)^2-4*1*2=1-8=-70 при любых х.

Итоговое разложение f'(x)=(x-1)(x+1)(x^2-x+2)

Нули производной известны, это x=\pm1

Везде при х коэффициент равен 1 (у правой скобки нет нулей, её мы считаем просто каким-то положительным числом), значит, в самом правом промежутке "+", а дальше чередование.

Имеем при \boxed {x \in (-\infty;-1)\cup(1;+\infty)} возрастание f(x), а при \boxed {x\in(-1;1)} убывание f(x),

x=-1 - точка локального максимума,

x=1 - точка локального минимума.

Убывание должно быть на интервале (a; a+\frac{1}{3}), поэтому если параметр захватит точки экстремума - ничего страшного, интервал как раз не включает концы.

С одной стороны, a\geq -1, как раз при a=-1 убывание на (-1;-\frac{2}{3}) выполняется.

С другой стороны, a+\frac{1}{3}\leq 1; a\leq \frac{2}{3}, при a=-\frac{2}{3} убывание продолжается вплоть до x=1, не включая эту точку.

Объединяя наши условия, получаем $1\leq a\leq \frac{2}{3} \Rightarrow a\in[1;\frac{2}{3}]

ответ: \boxed {a\in[1;\frac{2}{3}]}

0,0(0 оценок)
Ответ:
dykbguojd
dykbguojd
20.04.2021 01:28
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота