Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .
Через одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции