1) запишем данное выражение в десятичных дробях: (6,5-4,25):2,5=2,25:2,5=0,9. 2) В уравнении смешанные дроби превратим в неправильные: 45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10. 3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными: х+у=13 х-3=у Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85. 4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
Уравнение прямой, отсекающей от первого координатного угла треугольник, имеет вид y=kx+b . Этот треугольник прямоугольный и его площадь равна половине произведения катетов.
Так как точка А(1;2) принадлежит этой прямой,то подставив координаты точки А(1;2) в это уравнение получим
Уравнение прямой теперь будет выглядеть так: .
Найдём точки пересечения этой прямой с осями координат:
Длины отрезков, отсекаемых прямой y=kx+2-k на координатных осях, равны (2-k) на оси ОУ и (k-2)/k на оси ОХ. Эти отрезки и есть катеты прямоугольного треугольника. Вычислим его площадь:
Найдём минимум это функции S(k).
Точка минимума: , так как при переходе через k= -2 производная меняет знак с минуса на плюс.
(6,5-4,25):2,5=2,25:2,5=0,9.
2) В уравнении смешанные дроби превратим в неправильные:
45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10.
3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными:
х+у=13
х-3=у
Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85.
4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
Уравнение прямой, отсекающей от первого координатного угла треугольник, имеет вид y=kx+b . Этот треугольник прямоугольный и его площадь равна половине произведения катетов.
Так как точка А(1;2) принадлежит этой прямой,то подставив координаты точки А(1;2) в это уравнение получим
Уравнение прямой теперь будет выглядеть так: .
Найдём точки пересечения этой прямой с осями координат:
Длины отрезков, отсекаемых прямой y=kx+2-k на координатных осях, равны (2-k) на оси ОУ и (k-2)/k на оси ОХ. Эти отрезки и есть катеты прямоугольного треугольника. Вычислим его площадь:
Найдём минимум это функции S(k).
Точка минимума: , так как при переходе через k= -2 производная меняет знак с минуса на плюс.
При k= -2 уравнение искомой прямой будет
ответ: k= -2 .