(x + 3)(4 - x) - 12 = 0
1) x = - 1
(- 1 + 3)[4 - (- 1)] - 12 = 0
2 * 5 - 12 = 0
10 - 12 ≠ 0
x = - 1 - не является корнем этого уравнения
2) x = 0
(0 + 3)(4 - 0) - 12 = 0
3 * 4 - 12 = 0
12 - 12 = 0 - верно
x = 0 - является корнем этого уравнения
3) x = 1
(1 + 3)(4 - 1) - 12 = 0
4 * 3 - 12 = 0
x = 1 - является корнем этого уравнения
4) x = 2
(2 + 3)(4 - 2) - 12 = 0
5 * 2 - 12 = 0
x = 2 - не является корнем этого уравнения
5) x = 3
(3 + 3)(4 - 3) - 12 = 0
6 * 1 - 12 = 0
6 - 12 ≠ 0
x = 3 - не является корнем этого уравнения
ответ : 0 ; 1
А=[2;7]
То есть множество А это множество чисел от 2 (включительно) до 7 (включительно).
В=(2;9)
То есть множество В это множество чисел от 2 (не включительно) до 9 (не включительно)
А∩В то есть пересечение множеств А и В, тоесть необходимо найти все числа, которые одновременно есть как в множестве А, так и в множестве В.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Пересечение показано на 1 фото.
ответ: (2;7]
A∪B то есть объединение множеств А и В, необходимо найти все числа, которые есть в одном из множеств А или В или есть в обоих.
Объединение показано на 2 фото.
ответ: [2;9)
(x + 3)(4 - x) - 12 = 0
1) x = - 1
(- 1 + 3)[4 - (- 1)] - 12 = 0
2 * 5 - 12 = 0
10 - 12 ≠ 0
x = - 1 - не является корнем этого уравнения
2) x = 0
(0 + 3)(4 - 0) - 12 = 0
3 * 4 - 12 = 0
12 - 12 = 0 - верно
x = 0 - является корнем этого уравнения
3) x = 1
(1 + 3)(4 - 1) - 12 = 0
4 * 3 - 12 = 0
12 - 12 = 0 - верно
x = 1 - является корнем этого уравнения
4) x = 2
(2 + 3)(4 - 2) - 12 = 0
5 * 2 - 12 = 0
10 - 12 ≠ 0
x = 2 - не является корнем этого уравнения
5) x = 3
(3 + 3)(4 - 3) - 12 = 0
6 * 1 - 12 = 0
6 - 12 ≠ 0
x = 3 - не является корнем этого уравнения
ответ : 0 ; 1
А=[2;7]
То есть множество А это множество чисел от 2 (включительно) до 7 (включительно).
В=(2;9)
То есть множество В это множество чисел от 2 (не включительно) до 9 (не включительно)
А∩В то есть пересечение множеств А и В, тоесть необходимо найти все числа, которые одновременно есть как в множестве А, так и в множестве В.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Пересечение показано на 1 фото.
ответ: (2;7]
A∪B то есть объединение множеств А и В, необходимо найти все числа, которые есть в одном из множеств А или В или есть в обоих.
Отметим на кординатной прямой промежутки [2;7] и (2;9).
Объединение показано на 2 фото.
ответ: [2;9)