3. Даны функции
f: IR -> R, f (x) =-x+6, и
g: IR-R, g(x) = 3х – 8х -3.
а) Укажите букву И, если высказывание
истинно, или букву Л, если оно ложно:
„Функция f принимает отрицательные
значения при хе (6, +) ".
и
л
б) Найдите хєR, при которых
f(x)
g(x) = 0.
Verona
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
а=1 , b=6 , с=5
D= b²-4ac
D= 36 -4*1*5 =36-20= 16
D>0 два корня уравнения , √D= 4
х₁, х₂ = (-b +- √D) /2a
x₁= (-6-4)/2 =-10/2=-5
x₂= (-6+4)/2 = -2/2=-1
x² -1.8x -3.6 =0
D= (-1.8)² - 4* 1* (-3.6) = 3.24 +14.4 = 17.64
D>0 , √D= 4.2
х₁= (1,8 - 4,2 ) / 2 = 2,4/2=1,2
х₂= (1,8+4,2)/2 = 3
4х²-х-14=0
D= (-1)² -4 *4 *(-14)=1+ 224=225
D>0 , √D= 15
x₁= (1-15)/(2*4)= 14/8= 1.75
x₂= (1+15)/8= 16/8=2
2x²+x-3=0
D= 1 -4*2*(-3) = 1+24=25
D>0 , √D= 5
x₁= (-1-5) /(2*2) = -6/4= -1.5
x₂= (-1+5)/4 =1
2x²-9x=35
2x²-9x-35 =0
D= 81 -4*2*(-35) =81+280=361
D>0 , √D=19
x₁= (9-19)/ (2*2) =-10/4=-2.5
x₂= (9+19)/4 = 28/4=7