Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
ответ: 4/9
Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
9a²/4 =а
9а/4 =1
a = 4/9
ответ: 4/9
Войти
АнонимМатематика12 марта 23:52
Разложите на множители квадратный трехчлен x^2-5x+4
ответ или решение1
Романов Василий
Для того, чтобы разложить на множители квадратный трехчлен x2 - 5x + 4 приравняем к нулю его и решим полученное полное квадратное уравнение:
x2 - 5x + 4 = 0;
Ищем дискриминант по формуле:
D = b2 - 4ac = (-5)2 - 4 * 1 * 4 = 25 - 16 = 9;
Ищем корни по формулам:
x1 = (-b + √D)/2a = (5 + √9)/2 = (5 + 3)/2 = 8/2 = 4;
x2 = (-b - √D)/2a = (5 - √9)/2 = (5 - 3)/2 = 2/2 = 1.
Для разложения на множители применим формулу:
ax2 + bx + c = a(x - x1)(x - x2).
x2 - 5x + 4 = (x - 4)(x - 1).
ответ: (x - 4)(x - 1).