В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Камишок7
Камишок7
26.09.2022 18:40 •  Алгебра

(2e^2x+ 4/sin^2(2x) + 2) неопределённый интеграл с решением

Показать ответ
Ответ:
Marina12971
Marina12971
26.03.2021 16:53

ответ: 0

Объяснение:

Здравствуйте!

Попробуем составить рекуррентное соотношение  для чисел раскрасок.

Пусть для доски 2*k имеем A_{k} правильных раскрасок с четным числом закрашенных клеток и B_{k}  правильных раскрасок с нечетным числом закрашенный клеток, для доски

2*(k-1): A_{k-1} и B_{k-1}, соответственно.  Определим  A_{k+1}  и  B_{k+1} для доски 2*(k+1) .

Добавим к предыдущей доске, поверх k-й снизу строки,  k+1 -ю  строку. Вставим в нее одну из правильных раскрасок доски 2*k . У нас есть 3 варианта как мы можем закрашивать квадратики в новой строке.

Закрашиваем левую клетку, закрашиваем правую клетку или вообще не закрашиваем. Необходимо понимать, что если мы закрашиваем левую клетку в  k+1-й строке, то в  k-й строке  закрашен правый квадратик, либо вообще ничего не закрашено и наоборот.

Пусть мы не закрасили в верхней строке ни одного квадрата, в этом случае общее число четных раскрасок : N_{1} =  A_{k}  , а нечетных : K_{1} =B_{k}

(Будем считать, что пустая раскраска входит в число четных)

Пусть мы закрасили левый квадрат в  k+1-й строке, в этом случае либо правый квадрат  k-й строки закрашен, либо вообще ничего не закрашено. То есть из всех вариантов  A_{k} или B_{k} нужно вычесть те, в которых левая клетка  окрашена. Из симметрии очевидно, что числа вариантов с левой и правой окрашенной клетками равны.

Чтобы найти число всех вариантов с окрашенной левой или правой клеткой, нужно из общего числа вариантов вычесть варианты с незакрашенными клетками.

Очевидно, что число таких вариантов равно : A_{k-1} или B_{k-1}

Учитывая, что с добавлением одной закрашенной клетки четность меняется, то имеем:

N_{2} = N_{3} = B_{k} - \frac{ B_{k} - B_{k-1}}{2} = \frac{ B_{k} + B_{k-1}}{2} \\ , где N_{2} и N_{3} - количества правильных раскрасок с четным числом закрашенных квадратов,  

с закрашенным в  k+1-й строке левым(индекс 2) и правым (индекс 3) квадратом.

Аналогично:

K_{2} = K_{3} = \frac{ A_{k} + A_{k-1}}{2} \\ , где K_{2} и K_{3} - количества правильных раскрасок с нечетным числом закрашенных квадратов, с закрашенным в  k+1-й строке левым(индекс 2) и правым (индекс 3) квадратом.

Таким образом :

A_{k+1} =N_{1} + N_{2} + N_{3} = N_{1} +2N_{2} = A_{k} + B_{k} + B_{k-1}\\B_{k+1} =K_{1} + K_{2} + K_{3} = K_{1} +2K_{2} = B_{k} + A_{k} + A_{k-1}\\A_{k+1} -B_{k+1} = B_{k-1} - A_{k-1}

Найдем : A_{1,2} ; B_{1,2}

Когда n=1 , число вариантов с нечетным числом клеток равно B_{1} = 2(левый и правый квадрат закрашены) . С четным же числом клеток такая комбинация только одна A_{1}= 1, когда ни одна клетка не закрашена (0 клеток, 0 делится на 2).  A_{1} -B_{1} =1-2 = -1

Когда n= 2 , число вариантов с нечетным числом клеток равно B_{2} = 4  

(все варианты закрасить одну клетку, поскольку 3 клетки всегда будут вплотную) . С четным числом клеток имеем A_{2} = 3 таких комбинаций          ( две комбинации с двумя клетками по диагонали и одна комбинация с незакрашенными клетками).  A_{2} -B_{2}= 3-4 = -1

Из полученного выше свойства имеем:

A_{3} -B_{3} = B_{1} -A_{1} = -(A_{1} -B_{1}) = 1\\A_{4} -B_{4} = B_{2} -A_{2} = -(A_{2} -B_{2}) = 1\\A_{5} -B_{5} = B_{3} -A_{3} = -(A_{3} -B_{3}) = -1\\

И так далее, то есть A_{n} -B_{n} =+-1

Таким образом, сумма возможных значений  A_{n} -B_{n} равна:

S= -1+1 = 0

Если вам понравилось решение, ставь лайк и отметь его лучшим.

0,0(0 оценок)
Ответ:
Урок541
Урок541
02.01.2023 15:28

В решении.

Объяснение:

в)(х-у)/(х²-2ху+у²)=  

в знаменателе развёрнут квадрат разности, свернуть:

=(х-у)/(х-у)²=

сокращение на (х-у):

=1/(х-у);

г)(m²+2mn+n²)/(m+n)²=

в числителе развёрнут квадрат суммы, свернуть:

=(m+n)²/(m+n)²=1;

в)(b²-49)/(b²-14b+49)=

в числителе разность квадратов, развернуть, в знаменателе квадрат разности, свернуть:

=(b-7)(b+7)/(b-7)²=

сокращение на (b-7):

=(b+7)/(b-7);

г)(с²-18с+81)/(9-с)=

в числителе квадрат разности, свернуть:

=(9-с)²/(9-с)=

сокращение на (9-с):

=9-с;

в)(m⁵-3m²)/(2m⁷-6m⁴)=

=m²(m³-3)/2m⁴(m³-3)=

сокращение m² и m⁴ на m², (m³-3) и (m³-3) на (m³-3):

=1/(2m²);

г)(3n     не видно показатели степеней, не чёткое фото.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота