Понятно, что х - двузначное число. Пусть x=10a+b, где а, b - его цифры. 1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным. 2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак, x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23. Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят. Значит итоговый ответ: число х может быть 50, 44 или 47.
1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и
х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным.
2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак,
x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23.
Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят.
Значит итоговый ответ: число х может быть 50, 44 или 47.
- красные
- жёлтые
- все шары
все шары без одного, т.е. все оставшиеся.
По условию: .
Получаем первое уравнение:
Ещё по условию: .
Второе уравнение:
Левые части обоих уравнений равны, значит, их правые части равны между собой.
красныx шаров в коробке.
Подставим в уравнение и получим:
жёлтыx шаров в коробке.
всего шаров в коробке.
ответ: 7 красныx;
36 жёлтых;
43 всего шаров в коробке.