составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
0.01-4n+400n^2
Объяснение:
1) Возводим в степень скобку: (0.1-20n)^2 = (0.1-20n)(0.1-20n)
Стало: (0.1-20n)(0.1-20n)
2) Раскрываем скобки (0.1-20n)*(0.1-20n)=0.1*(0.1-20n)-20n*(0.1-20n)
Стало: 0.1*(0.1-20n)-20n*(0.1-20n)
3) Раскрываем скобки 0.1*(0.1-20n)=0.1*0.1-0.1*20n
Стало: 0.1*0.1-0.1*20n-20n*(0.1-20n)
4) Выполним умножение: 0.1*0.1 = 0.01
Стало: 0.01-0.1*20n-20n*(0.1-20n)
5) Выполним умножение: -0.1*20n = -2n
Стало: 0.01-2n-20n*(0.1-20n)
6) Раскрываем скобки -20n*(0.1-20n)=-20n*0.1+20n*20n
Стало: 0.01-2n-20n*0.1+20n*20n
7) Выполним умножение: -20n*0.1 = -2n
Стало: 0.01-2n-2n+20n*20n
8) Выполним умножение: 20n*20n = 400n^2
Стало: 0.01-2n-2n+400n^2
9) Выполним вычитание: -2n-2n = -4n
Стало: 0.01-4n+400n^2