В решении.
Объяснение:
а) 3в² - 48 = 3(в² = 16) = 3(в - 4)(в + 4);
б) 19х² - 19у² = 19(х² - у²) = 19(х - у)(х + у);
в) 18х² + 12х + 2 = 2(9х² + 6х + 1) = 2(3х + 1)² = 2(3х + 1)(3х + 1);
1) 10а + 15с = 5(2а + 3с);
2) 4a² - 9b² = (2a - 3b)(2a + 3b);
3) 6xy + ab - 2bx - 3ay =
= (6xy - 3ay) - (2bx - ab) =
= 3y(2x - a) - b(2x - a) =
= (2x - a)(3y - b);
4) 4a² + 28ab + 49b² = (2a + 7b)² = (2a + 7)(2a + 7);
5) b(a + c) + 2a + 2c =
= b(a + c) + (2a + 2c) =
= b(a + c) + 2(a + c) =
= (a + c)(b + 2);
6) 5a³c - 20acb - 10ac = 5ac(a² - 4b - 2);
7) x² - 3x - 5x + 15 =
= x² - 8x + 15;
Приравнять к нулю и решить как квадратное уравнение:
x² - 8x + 15 = 0
D=b²-4ac =64 - 60 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(8-2)/2
х₁=6/2
х₁=3;
х₂=(-b+√D)/2a
х₂=(8+2)/2
х₂=10/2
х₂=5.
Разложение:
x² - 8x + 15 = (х - 3)(х - 5);
8) 9а² - 6ас + с² = (3а - с)² = (3а - с)(3а - с).
ответ: 12 км/час. 10 км/час. 14 км/час.
Решение.
Пусть собственная скорость теплохода равна х км/час.
Тогда скорость по течению будет х+2 км/час.
Скорость против течения равна х-2 км/час.
Расстояние в 140 км по течению теплоход за 140/(х+2) часа.
Расстояние в 140 км против течения теплоход за 140/(х-2)часа
Общее время равно 29 часов вместе с остановкой на 5 часов или 24 часа чистого времени.
Составим уравнение:
140/(х+2) + 140/(х-2)=24;
140*(х-2) + 140(х+2)= 24(х+2)(х-2);
140х-280+140х+280=24х² - 96;
24х² -280х -96=0;
12х² - 140х - 48 =0;
6х² - 70х - 24 = 0;
3х²-35х-12=0;
a=3; b=-35; c= -12;
D=1369>0 - 2 корня.
х1=12; х2= - 0,333 - не соответствует условию.
х=12 км/час - собственная скорость теплохода.
По течению теплоход шел со скоростью 12+2 = 14 км/час.
Против течения теплоход шел со скоростью 12-2=10 км/час
В решении.
Объяснение:
а) 3в² - 48 = 3(в² = 16) = 3(в - 4)(в + 4);
б) 19х² - 19у² = 19(х² - у²) = 19(х - у)(х + у);
в) 18х² + 12х + 2 = 2(9х² + 6х + 1) = 2(3х + 1)² = 2(3х + 1)(3х + 1);
1) 10а + 15с = 5(2а + 3с);
2) 4a² - 9b² = (2a - 3b)(2a + 3b);
3) 6xy + ab - 2bx - 3ay =
= (6xy - 3ay) - (2bx - ab) =
= 3y(2x - a) - b(2x - a) =
= (2x - a)(3y - b);
4) 4a² + 28ab + 49b² = (2a + 7b)² = (2a + 7)(2a + 7);
5) b(a + c) + 2a + 2c =
= b(a + c) + (2a + 2c) =
= b(a + c) + 2(a + c) =
= (a + c)(b + 2);
6) 5a³c - 20acb - 10ac = 5ac(a² - 4b - 2);
7) x² - 3x - 5x + 15 =
= x² - 8x + 15;
Приравнять к нулю и решить как квадратное уравнение:
x² - 8x + 15 = 0
D=b²-4ac =64 - 60 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(8-2)/2
х₁=6/2
х₁=3;
х₂=(-b+√D)/2a
х₂=(8+2)/2
х₂=10/2
х₂=5.
Разложение:
x² - 8x + 15 = (х - 3)(х - 5);
8) 9а² - 6ас + с² = (3а - с)² = (3а - с)(3а - с).
ответ: 12 км/час. 10 км/час. 14 км/час.
Объяснение:
Решение.
Пусть собственная скорость теплохода равна х км/час.
Тогда скорость по течению будет х+2 км/час.
Скорость против течения равна х-2 км/час.
Расстояние в 140 км по течению теплоход за 140/(х+2) часа.
Расстояние в 140 км против течения теплоход за 140/(х-2)часа
Общее время равно 29 часов вместе с остановкой на 5 часов или 24 часа чистого времени.
Составим уравнение:
140/(х+2) + 140/(х-2)=24;
140*(х-2) + 140(х+2)= 24(х+2)(х-2);
140х-280+140х+280=24х² - 96;
24х² -280х -96=0;
12х² - 140х - 48 =0;
6х² - 70х - 24 = 0;
3х²-35х-12=0;
a=3; b=-35; c= -12;
D=1369>0 - 2 корня.
х1=12; х2= - 0,333 - не соответствует условию.
х=12 км/час - собственная скорость теплохода.
По течению теплоход шел со скоростью 12+2 = 14 км/час.
Против течения теплоход шел со скоростью 12-2=10 км/час