первое - неполное условие - нет правой части
Вторая система x = 0, y = 1
Объяснение:
√:√ = √( 6ˣ⁻²y / 6ˣ), степень в первом члене x-2y
= √( 6^ -2y) = 6^ -y = 1/6, y = 1
(1/3...)* 3 ... = 3^ (x-2y) / 3 ^( 2x-y), ^ - знак степени, скобка - показатель степени
= 3 ^ (x-2y-2x+y) = 1/ 3^ (x+y) = 1/ (3ˣ3^y), y = 1
= 1/ (3*3ˣ), = 1/3
3ˣ = 1, x = 0
По первому - т. к. неполное направление к действию
втрое уравнение ... = > 2^(x+y) = 2⁶ x+y = 6
√ * √ = z, - найдешь если это число подставишь - условие ищи полное - это должна быть какая-то степень 3.
√ * √ = √( 3ˣ⁻¹*3^2y) = √ 3^(x+2y-1), x+y = 6, и возведем обе части в квадрат => 3^(5+y) = z² - представляем как 3ⁿ
далее 5+ y = n, у = n-5
x1=πn,n∈z
3π<πn<4π
3<n<4
нет решения
6cos²x-11cosx+4=0
cosx=a
6a²-11a+4=0
D=121-96=25
a1=(11-5)/12=1/2⇒cosx=1/2⇒x=11π/6+2πk,k∈z
3π<11π/6+2πk<4π
18<11+12k<24
7<12k<13
7/12<k<13/12
k=1⇒x=11π/6+2π=23π/6
a2=(11+5)/12=4/3⇒cosx=4/3>1 нетрешения
2)2сos²x+10sin2xcos2x+4sin²x+4cos²x=0/cos²x
4tg²x+10tgx+6=0
tgx=a
2a²+5a+3=0
D=25-24=1
a1=(-5-1)/4=-1,5⇒tgx=-1,5⇒x=-arctg1,5+πn
x=2π-arctg1,5
a2=(-5+1)/4=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
x=3π/4
3)3cos²x+5sinxcosx+2cos²x=0
5cosx*(cosx+sinx)=0
cosx=0⇒x=π/2+πn,n∈z
x=5π/2
cosx+sinx=0/cosx
tgx+1=0
tgx=-1⇒x=-π/4+πm,m∈z
x=7π/4
первое - неполное условие - нет правой части
Вторая система x = 0, y = 1
Объяснение:
√:√ = √( 6ˣ⁻²y / 6ˣ), степень в первом члене x-2y
= √( 6^ -2y) = 6^ -y = 1/6, y = 1
(1/3...)* 3 ... = 3^ (x-2y) / 3 ^( 2x-y), ^ - знак степени, скобка - показатель степени
= 3 ^ (x-2y-2x+y) = 1/ 3^ (x+y) = 1/ (3ˣ3^y), y = 1
= 1/ (3*3ˣ), = 1/3
3ˣ = 1, x = 0
По первому - т. к. неполное направление к действию
втрое уравнение ... = > 2^(x+y) = 2⁶ x+y = 6
√ * √ = z, - найдешь если это число подставишь - условие ищи полное - это должна быть какая-то степень 3.
√ * √ = √( 3ˣ⁻¹*3^2y) = √ 3^(x+2y-1), x+y = 6, и возведем обе части в квадрат => 3^(5+y) = z² - представляем как 3ⁿ
далее 5+ y = n, у = n-5