X - первоначальная загрузка первой машины y - первоначальная загрузка второй машины n - первоначальное количество рейсов n*x -n*y =60 или n(x-y)=60 ---> (x-y) =60/n
(x-4) последующая загрузка первой машины (y-3) последующая загрузка второй машины (n+10) последующее количество рейсов (n+10)(x-4 -y+3) =60 (n+10)(x-y-1) =60 ( n+10)(x-y) -(n+10) =60 (x-y) -1=60/(n+10) (x-y)= 60/(n+10) +1 и ранее: х -y =60/n 60/(n+10) +1= 60/n 60n+n²+10n=60n+600 n²+10n-600=0 D=2500 n1=(-10+50)/2=20 n2<0 не уд.усл. (первоначальное количество рейсов n =20) выполненное количество рейсов n+10=30
n(x-y) =60 x-y=60 : 20 x-y =3 первоначальная разность загрузки первой и второй машины (x>4 y>3) x-y=2 - реальная разность загрузок машин (конкретно загрузку каждой машины определить невозможно, так как не дано ни общее количество перевозимого груза, ни грузоподъёмность машин и не оговорена допустимая загрузка машин).
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
y - первоначальная загрузка второй машины
n - первоначальное количество рейсов
n*x -n*y =60 или n(x-y)=60 ---> (x-y) =60/n
(x-4) последующая загрузка первой машины
(y-3) последующая загрузка второй машины
(n+10) последующее количество рейсов
(n+10)(x-4 -y+3) =60
(n+10)(x-y-1) =60
( n+10)(x-y) -(n+10) =60
(x-y) -1=60/(n+10)
(x-y)= 60/(n+10) +1 и ранее: х -y =60/n
60/(n+10) +1= 60/n
60n+n²+10n=60n+600
n²+10n-600=0
D=2500
n1=(-10+50)/2=20 n2<0 не уд.усл.
(первоначальное количество рейсов n =20)
выполненное количество рейсов n+10=30
n(x-y) =60
x-y=60 : 20
x-y =3 первоначальная разность загрузки первой и второй машины
(x>4 y>3)
x-y=2 - реальная разность загрузок машин
(конкретно загрузку каждой машины определить невозможно, так как не дано ни общее количество перевозимого груза, ни грузоподъёмность машин и не оговорена допустимая загрузка машин).
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.