2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.
a x^{2} +bx + c = a(x - x_{1} )(x - x_{2} )
Где, x_{1} и x_{2} - корни уравнения
a) x^{2} +14x + 48 = 0
D = 14^{2} - 4*1*48 = 4 = 2^{2}
x_{1} = \frac{-14+2}{2} = -6
x_{2} = \frac{-14-2}{2} = 8
x^{2} +14x + 48 = (x - (-6))(x - (-8)) = (x+6)(x+8)
b) 25 x^{2} -10x-12 =0
D = (-10)^{2} - 4*25*(-12) = 1300= (10 \sqrt{13}) ^{2}
x_{1} = \frac{-(-10 +10 \sqrt{13})}{2*25} = \frac{1}{5} + \frac{1}{5} \sqrt{13}
x_{2} = \frac{-(-10 -10 \sqrt{13})}{2*25} = \frac{1}{5} - \frac{1}{5} \sqrt{13}
Подставляем в формулу:
25 x^{2} -10x-12 = 25(x - ( \frac{1}{5} + \frac{1}{5} \sqrt{13} ))(x - (\frac{1}{5} - \frac{1}{5} \sqrt{13}) ) = (25x -5 + 5 \sqrt{13} )(x - (\frac{1}{5} - \frac{1}{5} \sqrt{13}) ) = (25x -5 + 5 \sqrt{13} )(x -\frac{1}{5} + \frac{1}{5} \sqrt{13}))
Объяснение:
1.Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.
а) Задано: n = 700, p = 0,35, k = 270.
Найдем P700(270). Используем локальную теорему Лапласа.
Находим:
Значение функции φ(x) найдем из таблицы:
б) Задано: n = 700, p = 0,35, a = 230, b = 270.
Найдем P700(230 < k < 270).
Используем интегральную теорему Лапласа (23), (24). Находим:
Значение функции Ф(x) найдем из таблицы:
в) Задано: n = 700, p = 0,35, a = 270, b = 700.
Найдем P700(k > 270).
2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.