В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
даня1166
даня1166
06.03.2021 06:23 •  Алгебра

15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:

- 1-го числа каждого месяца долг возрастает на 5% по сравнению с концом предыдущего месяца;

- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.

Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,59 млн. рублей?

Показать ответ
Ответ:
dykbguojd
dykbguojd
20.04.2021 01:28
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
0,0(0 оценок)
Ответ:
FACE091
FACE091
09.05.2020 17:49
Положительным рациональным числом называется класс дробей, а каждая дробь, принадлежащая этому классу, есть запись (представление) этого числа.

Например, о дроби Положительные рациональные числа мы должны говорить, что она является записью некоторого рационального числа. Однако часто для краткости говорят: Положительные рациональные числа – это рациональное число.

Множество всех положительных рациональных чисел принято обозначать символом Q+. Определим на это множество отношение равенства.

Если положительное рациональное число a представить дробью Положительные рациональные числа, а положительное рациональное число b – другой дробью Положительные рациональные числа, то a = b тогда и только тогда, когда mq=np.

Из данного определения следует, что равные рациональные числа представляются равными дробями. Среди всех записей любого положительного рационального числа выделяют дробь, которая является несократимой, и доказывают, что любое рациональное число представимо единственным образом несократимой дробью (мы это доказательство опускаем). Для того чтобы рациональное число Положительные рациональные числа представить несократимой дробью, достаточно числитель m и знаменатель n разделить на их наибольший общий

Пусть при некотором единственном отрезке e длина отрезка x выражается дробью Положительные рациональные числа, а длина отрезка у – дробью Положительные рациональные числа, и пусть отрезок z состоит из отрезков x и y. Такая n-ая часть отрезка e укладывается в отрезок z m+p раз, т.е. длина отрезка z выражается дробью Положительные рациональные числа. Поэтому полагают, что Положительные рациональные числа.

Если положительное рациональное число a представить дробью Положительные рациональные числа, а положительное рациональное число b – дробью Положительные рациональные числа, то их суммой называется число a+b, которое представляется дробью Положительные рациональные числа.

Таким образом по определению

Положительные рациональные числа. (1)

Можно доказать, что при замене дробей Положительные рациональные числа и Положительные рациональные числа, представляющих числа а и b, равными им дробями, дробь Положительные рациональные числа заменяется равной ей дробью. Поэтому сумма рациональных чисел не зависит от выбора представляющих их дробей.

В определении суммы рациональных чисел мы использовали их представления в виде дробей с одинаковыми знаменателями. Если же числа а и b представлены дробями с различными знаменателями, то сначала надо привести их к одному знаменателю, а затем применить правило (1).

Сложение положительных рациональных чисел коммутативно и ассоциативно,

(Положительные рациональные числа Q+) a + b = b + a;

(Положительные рациональные числа Q+) (a + b) + c = a + (b + c).

Докажем, например, коммутативность сложения. Представим числа а и b дробями Положительные рациональные числа и Положительные рациональные числа. Тогда сумма a+b представляется дробью Положительные рациональные числа, а сумма b+a – дробью Положительные рациональные числа. Так как m, p, n – натуральные числа, то m+p = p+m и, следовательно, a+b = b+a. Таким образом, коммутативность сложения положительных рациональных чисел вытекает из коммутативности сложения натуральных чисел.

Если положительное числа а представлено дробью Положительные рациональные числа, а положительное рациональное число b – дробью Положительные рациональные числа , то их произведением называется число ab, которое представляет дробью Положительные рациональные числа.

Таким образом, по определению,

Положительные рациональные числа. (2)

Можно доказать, что при замене дробей Положительные рациональные числа и Положительные рациональные числа , представляющих числа a и b, равными им дробями, дробь Положительные рациональные числа заменяется равной ей дробью. Поэтому произведение чисел a и b не зависит от выбора представляющих их дробей.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основывается на определении умножения и сложения положительных рациональных чисел, а также на соот­ветствующих свойствах сложения и умножения натуральных чисел.

Определение сложения положительных рациональных чисел дает возможность определить отношение «меньше» на множестве Q+.

Пусть a и b - положительные рациональные числа. Считают, что число b меньше числа а, если существует такое положительное рациональное число с, что а =b + с.

В этом же случае считают, что число а больше числа b. Пишут b < a,

a >b.

:
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота