15 сентября планируется взять кредит в банке на 12 месяцев. Условия его возврата таковы:
- 1-го числа каждого месяца долг возрастает на 5% по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Какую сумму следует взять в кредит, чтобы общая сумма выплат после полного погашения равнялась 1,59 млн. рублей?
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
Например, о дроби Положительные рациональные числа мы должны говорить, что она является записью некоторого рационального числа. Однако часто для краткости говорят: Положительные рациональные числа – это рациональное число.
Множество всех положительных рациональных чисел принято обозначать символом Q+. Определим на это множество отношение равенства.
Если положительное рациональное число a представить дробью Положительные рациональные числа, а положительное рациональное число b – другой дробью Положительные рациональные числа, то a = b тогда и только тогда, когда mq=np.
Из данного определения следует, что равные рациональные числа представляются равными дробями. Среди всех записей любого положительного рационального числа выделяют дробь, которая является несократимой, и доказывают, что любое рациональное число представимо единственным образом несократимой дробью (мы это доказательство опускаем). Для того чтобы рациональное число Положительные рациональные числа представить несократимой дробью, достаточно числитель m и знаменатель n разделить на их наибольший общий
Пусть при некотором единственном отрезке e длина отрезка x выражается дробью Положительные рациональные числа, а длина отрезка у – дробью Положительные рациональные числа, и пусть отрезок z состоит из отрезков x и y. Такая n-ая часть отрезка e укладывается в отрезок z m+p раз, т.е. длина отрезка z выражается дробью Положительные рациональные числа. Поэтому полагают, что Положительные рациональные числа.
Если положительное рациональное число a представить дробью Положительные рациональные числа, а положительное рациональное число b – дробью Положительные рациональные числа, то их суммой называется число a+b, которое представляется дробью Положительные рациональные числа.
Таким образом по определению
Положительные рациональные числа. (1)
Можно доказать, что при замене дробей Положительные рациональные числа и Положительные рациональные числа, представляющих числа а и b, равными им дробями, дробь Положительные рациональные числа заменяется равной ей дробью. Поэтому сумма рациональных чисел не зависит от выбора представляющих их дробей.
В определении суммы рациональных чисел мы использовали их представления в виде дробей с одинаковыми знаменателями. Если же числа а и b представлены дробями с различными знаменателями, то сначала надо привести их к одному знаменателю, а затем применить правило (1).
Сложение положительных рациональных чисел коммутативно и ассоциативно,
(Положительные рациональные числа Q+) a + b = b + a;
(Положительные рациональные числа Q+) (a + b) + c = a + (b + c).
Докажем, например, коммутативность сложения. Представим числа а и b дробями Положительные рациональные числа и Положительные рациональные числа. Тогда сумма a+b представляется дробью Положительные рациональные числа, а сумма b+a – дробью Положительные рациональные числа. Так как m, p, n – натуральные числа, то m+p = p+m и, следовательно, a+b = b+a. Таким образом, коммутативность сложения положительных рациональных чисел вытекает из коммутативности сложения натуральных чисел.
Если положительное числа а представлено дробью Положительные рациональные числа, а положительное рациональное число b – дробью Положительные рациональные числа , то их произведением называется число ab, которое представляет дробью Положительные рациональные числа.
Таким образом, по определению,
Положительные рациональные числа. (2)
Можно доказать, что при замене дробей Положительные рациональные числа и Положительные рациональные числа , представляющих числа a и b, равными им дробями, дробь Положительные рациональные числа заменяется равной ей дробью. Поэтому произведение чисел a и b не зависит от выбора представляющих их дробей.
Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основывается на определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.
Определение сложения положительных рациональных чисел дает возможность определить отношение «меньше» на множестве Q+.
Пусть a и b - положительные рациональные числа. Считают, что число b меньше числа а, если существует такое положительное рациональное число с, что а =b + с.
В этом же случае считают, что число а больше числа b. Пишут b < a,
a >b.
: