1) у = √(8 - 0,5х²) Подкоренное выражение не должно быть отрицательным, поэтому 8 - 0,5х² ≥ 0 решаем уравнение 8 - 0,5х² = 0 х² = 16 х1 = -4; х2 = 4 График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4. Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность f(-x) = (-x + 2sinx)/(3cosx + x²) f(-x) = -(x - 2sinx)/(3cosx + x²) Очевидно, что функция нечётная, потому что f(-x) = -f(x) Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими. Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) = = ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x) Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x F(x) = 0 x/2 - 4/x = 0 ОДЗ: х≠0 х² - 8 = 0 х² = 8 х1 = -2√2; х2 = 2√2; Функция равна нулю при х =-2√2 и х = 2√2
1.-2sin (x)=- Разделить обе стороны уравнения на -2: sin (x)=; Поскольку sin (t)=sin(π-t),уравнение имеет 2 решения: sin (x)= sin (π-x)=; Чтобы изолировать x/π-x,нужно использовать обратную тригонометрическую функцию: x=arcsin () x=arcsin (); Используя таблицу значений тригонометрических функций или единичную окружность,найдём значение arcsin(): x= π-x=; Поскольку sin (x/π-x) является периодической функцией,нужно добавить период 2kπ,k∈Z для нахождения всех решений: x=+2kπ,k∈Z π-x=+2kπ,k∈Z; Решить уравнение относительно x: x=+2kπ,k∈Z остаётся x=-2kπ,k∈Z; Т.к. k∈Z,то -2kπ=2kπ: x=+2kπ,k∈Z x=+2kπ,k∈Z; Окончательное решение: x=, k∈Z. 2.cos (2x)-sin (x)=0 Используя cos (2t)=1-2sin (t²),записать выражение в развёрнутом виде: 1-2sin (x)²-sin (x)=0; Решить уравнение используя подстановку t=sin (x): 1-2t²-t=0; Решить уравнение относительно t: t= t=-1; Сделать обратную подстановку t=sin (x): sin (x)= sin (x)=-1; Решить уравнение относительно x: x=, k∈Z, x=, k∈Z x=, k∈Z; Найти объединение: x=, k∈Z
Подкоренное выражение не должно быть отрицательным, поэтому
8 - 0,5х² ≥ 0
решаем уравнение
8 - 0,5х² = 0
х² = 16
х1 = -4; х2 = 4
График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4.
Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность
f(-x) = (-x + 2sinx)/(3cosx + x²)
f(-x) = -(x - 2sinx)/(3cosx + x²)
Очевидно, что функция нечётная, потому что f(-x) = -f(x)
Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими.
Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) =
= ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x)
Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x
F(x) = 0
x/2 - 4/x = 0
ОДЗ: х≠0
х² - 8 = 0
х² = 8
х1 = -2√2; х2 = 2√2;
Функция равна нулю при х =-2√2 и х = 2√2
Разделить обе стороны уравнения на -2:
sin (x)=;
Поскольку sin (t)=sin(π-t),уравнение имеет 2 решения:
sin (x)=
sin (π-x)=;
Чтобы изолировать x/π-x,нужно использовать обратную тригонометрическую функцию:
x=arcsin ()
x=arcsin ();
Используя таблицу значений тригонометрических функций или единичную окружность,найдём значение arcsin():
x=
π-x=;
Поскольку sin (x/π-x) является периодической функцией,нужно добавить период 2kπ,k∈Z для нахождения всех решений:
x=+2kπ,k∈Z
π-x=+2kπ,k∈Z;
Решить уравнение относительно x:
x=+2kπ,k∈Z остаётся
x=-2kπ,k∈Z;
Т.к. k∈Z,то -2kπ=2kπ:
x=+2kπ,k∈Z
x=+2kπ,k∈Z;
Окончательное решение:
x=, k∈Z.
2.cos (2x)-sin (x)=0
Используя cos (2t)=1-2sin (t²),записать выражение в развёрнутом виде:
1-2sin (x)²-sin (x)=0;
Решить уравнение используя подстановку t=sin (x):
1-2t²-t=0;
Решить уравнение относительно t:
t=
t=-1;
Сделать обратную подстановку t=sin (x):
sin (x)=
sin (x)=-1;
Решить уравнение относительно x:
x=, k∈Z,
x=, k∈Z
x=, k∈Z;
Найти объединение:
x=, k∈Z