Теорема: Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия MN пересечения этих плоскостей параллельна АВ.
Плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, поэтому проходит вне треугольника, МС=АМ+АС, и МN > AB (см. рисунок)
Примем коэффициент отношения АМ:АС=а.
Тогда АС=5а, АМ=2а, а АМ=5а+2а=7а.
Плоскость параллельна АВ, следовательно, пересекает плоскость, в которой лежит треугольник, по прямой, параллельной АВ.
Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и СN равны. ⇒ ∆ АВС~∆ AMN ( их углы равны).
Для того чтобы доказать, что множество не замкнуто, нам достаточно найти два иррациональных числа - сложить их и в результате получить рациональное число. То есть сумма двух иррациональных чисел не всегда иррациональна, то есть не замкнуто на иррациональности. Возьмем простейшее иррациональное число √2 и соответсвенно -√2 сложим √2 + (-√2) = √2 - √2 = 0 0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число Так же доказывается незамкнутость иррациональных чисел при 1. разности 1+√3 и √3 равна 1 2. произведении √2 и 2√2 равно 4 3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2) Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c² b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число
Теорема: Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия MN пересечения этих плоскостей параллельна АВ.
Плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, поэтому проходит вне треугольника, МС=АМ+АС, и МN > AB (см. рисунок)
Примем коэффициент отношения АМ:АС=а.
Тогда АС=5а, АМ=2а, а АМ=5а+2а=7а.
Плоскость параллельна АВ, следовательно, пересекает плоскость, в которой лежит треугольник, по прямой, параллельной АВ.
Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и СN равны. ⇒ ∆ АВС~∆ AMN ( их углы равны).
Из подобия следует отношение:
АМ:АС=MN:AB
7a:5a=MN:10⇒
MN=70:5=14 (ед. длины)
Возьмем простейшее иррациональное число √2 и соответсвенно -√2
сложим √2 + (-√2) = √2 - √2 = 0
0 число рациональное . Тем самым мы нашли два иррациональных числа, которые при сложении дают рациональное число
Так же доказывается незамкнутость иррациональных чисел при
1. разности 1+√3 и √3 равна 1
2. произведении √2 и 2√2 равно 4
3. делении 2√2 и √2 равно 2
Докажем что √2 иррациональное число
Предположим что оно рациональное то есть его можно представить в виде несократимой дроби √2=a/b где a , целые и взаимнопросты (в противном случае они бы сократились) замечаем что a b оба не четные (если бы были оба четными то сократились на 2)
Возводим в квадрат 2=a²/b² 2b²=a² замечаем что число 2b² четное, значит и a² тоже четное. заменяем a=2c и подставляем в 2b²=(2c)²=4c²
b²=2c² получили что и b четное. То есть a b четные и их можно сократить, но мы предполагали что они взаимнопросты, и тем самым допустили противоречие. Значит √2 нельзя представить в виде дроби и оно иррациональное число