Пароход проходит 48 км по течению реки и столько же против течения за 5 часов. Если скорость течения реки составляет 4 км в час, какая скорость парохода в стоячей воде?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость парохода в стоячей воде.
х+4 - скорость парохода по течению.
х-4 - скорость парохода против течения.
48/(х+4) - время парохода по течению.
48/(х-4) - время парохода против течения.
В пути пароход был 5 часов, уравнение:
48/(х+4)+48/(х-4)=5
Общий знаменатель (х+4)(х-4), надписываем над числителями дополнительные множители, избавляемся от дроби:
48*(х-4)+48*(х+4)=5(х+4)(х-4)
48х-192+48х+192=5х²-80
96х=5х²-80
-5х²+96х+80=0
Разделить уравнение на -5 для упрощения:
х²-19,2х-16=0, квадратное уравнение, ищем корни:
D=b²-4ac = 368,64+64=432,64 √D=20,8
х₁=(-b-√D)/2a
х₁=(19,2-20,8)/2
х₁= -1,6/2= -0,8, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(19,2+20,8)/2
х₂=40/2
х₂=20 (км/час) - скорость парохода в стоячей воде.
Найдем, в каких пределах может изменяться сума цифр трехзначного числа:
- минимальная сумма цифр равна 1 (у числа 100)
- максимальная сумма цифр равна 27 (у числа 999)
Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.
- сумма цифр числа 19 равна 1+9=10
- сумма цифр числа 27 равна 2+7=9
Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.
Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.
Рассмотрим случай, когда в записи числа используются одинаковые цифры:
9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел
Рассмотрим случай, когда в записи числа не используются одинаковые цифры:
9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел
Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.
20 (км/час) - скорость парохода в стоячей воде.
Объяснение:
Пароход проходит 48 км по течению реки и столько же против течения за 5 часов. Если скорость течения реки составляет 4 км в час, какая скорость парохода в стоячей воде?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х – скорость парохода в стоячей воде.
х+4 - скорость парохода по течению.
х-4 - скорость парохода против течения.
48/(х+4) - время парохода по течению.
48/(х-4) - время парохода против течения.
В пути пароход был 5 часов, уравнение:
48/(х+4)+48/(х-4)=5
Общий знаменатель (х+4)(х-4), надписываем над числителями дополнительные множители, избавляемся от дроби:
48*(х-4)+48*(х+4)=5(х+4)(х-4)
48х-192+48х+192=5х²-80
96х=5х²-80
-5х²+96х+80=0
Разделить уравнение на -5 для упрощения:
х²-19,2х-16=0, квадратное уравнение, ищем корни:
D=b²-4ac = 368,64+64=432,64 √D=20,8
х₁=(-b-√D)/2a
х₁=(19,2-20,8)/2
х₁= -1,6/2= -0,8, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(19,2+20,8)/2
х₂=40/2
х₂=20 (км/час) - скорость парохода в стоячей воде.
Проверка:
48/24+48/16=2+3=5 (часов), верно.
Найдем, в каких пределах может изменяться сума цифр трехзначного числа:
- минимальная сумма цифр равна 1 (у числа 100)
- максимальная сумма цифр равна 27 (у числа 999)
Найдем наибольшую сумму цифр среди чисел от 1 до 27. Очевидно, что нужно по возможности максимально увеличить разряд единиц и разряд десятков. Таким образом, образуется два кандидата: числа 19 и 27.
- сумма цифр числа 19 равна 1+9=10
- сумма цифр числа 27 равна 2+7=9
Итак, наибольшая сумма цифр суммы цифр равна 10. Значит, искомая сумма цифр равна 19.
Трехзначные числа с суммой цифр 19 можно разделить на две группы: содержащие одинаковые цифры и не содержащие одинаковые цифры.
Рассмотрим случай, когда в записи числа используются одинаковые цифры:
9-9-1, 9-5-5, 8-8-3, 7-7-5, 7-6-6 - итого 5 случаев, для каждого из которых существует перестановок цифр указать место для уникальной цифры). Всего для этих вариантов имеем 5·3=15 чисел
Рассмотрим случай, когда в записи числа не используются одинаковые цифры:
9-8-2, 9-7-3, 9-6-4, 8-7-4, 8-6-5 - итого, 5 случаев, для каждого из которых существует перестановок цифр. Всего для этих вариантов имеем 5·6=30 чисел
Таким образом, всего есть 15+30=45 чисел, удовлетворяющих поставленному условию.
ответ: 45