№1. Запишите одночлен в стандартном виде: 3а3bc7abc
(-113)b2c3(-215)b2c2
№ 2. Запишите многочлен в стандартном виде:
a-7a
7a+b2-3a-2b2
4x-(2a-x)
№ 3. Вынесите за скобки общий множитель многочлена:
12x-6y
2ab-6bc
9x2-12x2y3
№ 4. Преобразуйте выражение в многочлен стандартного вида:
2x3(x-3y)
(2x-3y)(3y+2x)
(a+b)(a-b)(a+b)
№ 5. Разложите на множители:
m(n-3)+2(n-3)
x-2y-a(2y-x)
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
1) 14x² - 5x - 1 = 0
(a = 14, b = -5, c = -1)
D = b² - 4ac
D = (-5)² - 4 • 14 • (-1) = 25 + 56 = 81 = 9²
D > 0, ⇒ уравнение имеет два действительных корня:
x₁,₂ = (-b ± √D)/2a
x₁ = (-(-5) + 9)/(2 • 14) = 14/28 = ½
x₂ = (-(-5) - 9)/(2 • 14) = -4/28 = -⅐
ответ: x₁ = ½, x₂ = -⅐
2) 2x² + x + 67 = 0
(a = 2, b = 1, c = 67)
D = b² - 4ac
D = 1² - 4 • 2 • 67 = 1 - 536 = -535
D < 0, ⇒ уравнение не имеет действительных корней
ответ: нет корней
3) 2p² + 7p - 30 = 0
(a = 2, b = 7, c = -30)
D = b² - 4ac
D = 7² - 4 • 2 • (-30) = 49 + 240 = 289 = 17²
D > 0, ⇒ уравнение имеет два действительных корня:
p₁,₂ = (-b ± √D)/2a
p₁ = (-7 + 17)/(2 • 2) = 10/4 = 5/2 = 2,5
p₂ = (-7 - 17)/(2 • 2) = -24/4 = -6
ответ: p₁ = 2,5, p₂ = -6