1. Запишите множество, состоящее из скаута и отряда, командиром которого он является. 2. Покажите, что, выполняя задание: «Увеличь каждое нечетное однозначное число в 2 раза», учащиеся встречаются с двумя задания множества.
3. Покажите, что, выполняя задание: «Какое число лишнее в ряду: 470, 720, 330, 400, 510, 640», учащиеся, по существу, пользуются понятиями характеристического свойства элементов множества и принадлежности элемента множеству.
4. Приведите примеры трех заданий из учебников математики для начальных классов, при выполнении которых осуществляется переход от одного задания множества к другому.
5. О каких теоретико–множественных понятиях идет речь в следующих заданиях, выполняемых учащимися начальных классов: а) Запиши по порядку числа от 10 до 19. Подчеркни и прочитай четные числа; б) Из ряда чисел от 1 до 20 выпиши по порядку числа, которые делятся на 5; в) Запиши три числа, которые при делении на 7 дают в остатке 4.
6. Изобразите на диаграмме Эйлера – Венна следующие множества: множество всех отличников 3–Б класса школы № 5, множество мальчиков этого же класса, множество девочек этого же класса. Покажите на диаграмме фигуру, изображающую множество всех учеников 3-Б класса, фигуру, изображающую множество мальчиков-отличников.
Объяснение: пусть скорость катера=х, и если он по течению, то его скорость увеличилась на 3км/ч, поэтому по течению он проплыл 48км со скоростью х+3. Когда он плыл против течения, то скорость течения ему не а наоборот и он проплыл 18км со скоростью х-3. По течению он потратил 48/х+3 времени, а против 18/х-3. Зная, что он потратил на всю дорогу 3 часа, составим уравнение:
(48/х+3)+(18/х-3)=3 |на этом этапе подбираем общий знаменатель:
(48х-144+18х+54)/(х+3)(х-3)=3
(66х-90)/(х²-9)=3 | перемножим числитель и знаменатель соседних дробей крест накрест:
(х²-9)3=66х-90
3х²-27-66х+90=0
3х²-66х+63=0 |÷3
х²-22х+21=0
Д=484-4×21=484-84=400
х1=(22-20)/2=2/2=1
х2=(22+20)/2=42/2=21
Итак: есть 2 варианта значения х, но первый вариант нам не подходит поскольку скорость катера на самом деле больше, чем 1км/ч, поэтому используем х2=21.
Скорость катера=21км/ч
Решить уравнение sin(8πx)+1 = cos(4πx)+ sqrt(2)*cos(4πx - π/4)
ответ: 1/8 + n/2 , n∈ ℤ ; x = ± 1/12 +k /2, k∈ ℤ
Объяснение:
sin2α =2sinα*cosα ; *cos(α - β )= cosα*cosβ ; sin(π/4)*cos(π/4) = 1 /√2 .
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sin(2*4πx) + 1 = cos(4πx)+ √2*cos(4πx - π/4) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx)+√2*(cos(4πx)*cos(π/4) +sin(4πx)*sin(π/4)) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx)+√2(cos(4πx)*1/√2 +sin(4πx)*1/√2) ;
2sin(4πx)*cos(4πx) +1 = cos(4πx) + cos(4πx) +sin(4πx) ;
2sin(4πx)*cos(4πx) -2cos(4πx )+ 1- sin(4πx) = 0 ;
2sin(4πx)*cos(4πx) - 2cos(4πx )+ 1- sin(4πx) = 0 ;
2cos(4πx )*(sin(4πx) -1) - (sin(4πx) -1) = 0 ;
2(sin(4πx) -1)* (cos(4πx) -1/2 ) = 0 ;
а)
sin(4πx) -1 = 0
sin(4πx) =1 ;
4πx = π/2 +2πn , n∈ ℤ ;
x = 1/8 + n/2 , n∈ ℤ
б)
cos(4πx) -1/2 =0 ;
cos(4πx) = 1/2 ;
4πx = ± π/3 +2πk , k∈ ℤ ;
x = ± 1/12 +k /2, k∈ ℤ