1)Замени d одночленом так, чтобы получился квадрат бинома: 9x2−7x+d.
2)Представь в виде произведения двух биномов
(переменные вводи в латинской раскладке):
4b2+4b+1.
3)Замени k одночленом так, чтобы получился квадрат двучлена:
36x2−5x+k.
4)Замени g одночленом так, чтобы получился квадрат двучлена:
g2+7z+9z2.
5)Разложи на множители
(переменные вводи в латинской раскладке):
100y2+20y+1.
6)Замени d одночленом так, чтобы получился квадрат бинома:
9y2−5y+d.
В решении.
Объяснение:
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(0,04; 0,2)
0,2 = √0,04
0,2 = 0,2, проходит.
2) В(81; -9)
-9 = ±√81
-9 = -9, проходит.
3) С(54; 3√6)
3√6 = √54
3√6 = √9*6
3√6 = 3√6, проходит.
б) х ∈ [0; 16]
y=√0 = 0;
y=√16 = 4;
При х ∈ [0; 16] у ∈ [0; 4].
в) у ∈ [7; 13]
у = √х
7=√х х=7² х=49;
13=√х х=13² х=169.
При х ∈ [49; 169] у ∈ [7; 13].
Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π.
Тому досить побудувати її графік на проміжку [0;π2)
Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині.
0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2)
Використовуючи періодичність, будуємо графік функції = на всій області визначення.
Графік функції = називають тангенсоїдою.
Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2)
tgxgrafik.png
Властивості функції =
1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає:
- значення 0, при =π,∈ℤ;
- додатні значення на інтервалах (π;π2+π),∈ℤ;
- від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.