1.Укажите соответствующий вывод для каждого неравенства.
а)〖 x〗^2+4x+10≥0
b) 〖-x〗^2+10x-25>0
c) 〖 x〗^2+3x+2≤0
d) 〖-x〗^2+4<0
2. Неравенство (x-a)(2x-1)(x+b)>0 имеет решение (-4; 1/2)U(5; +∞)
3. Решите систему неравенств:
{█(〖 5x〗^2-9x+4≥[email protected]+3>0)┤
4sin²x-2sinxcosx-3(sin²x+cos²x)=0
4sin²x-2sinxcosx-3sin²x-3cos²x=0
sin²x-2sinxcosx-3cos²x=0 |÷cos²x
tg²x-2tgx-3=0
tgx=t
t²-2t-3=0
t₁+t₂=2 t₁t₂=-3
t₁=-1 tgx=-1 x=arctg(-1)+πn x=-arctg1+πn x=-π/4+πn, n∈Z
t₂=3 tgx=3 x=arctg3+πk, k∈Z
2)3(cos²x-sin²x)+sin²x+5sinxcosx=0
3cos²x-3sin²x+sin²x+5sinxcosx=0
3cos²x-2sin²x+5sinxcosx=0 |÷cos²x
3-2tg²x+5tgx=0
tgx=t
3-2t²+5t=0
2t²-5t-3=0
D=25-4·2·(-3)=49
t₁=(5-7)/4=-1/2 tgx=-1/2 x=arctg(-1/2)+πn x=-arctg1/2+πn n∈Z
t₂=(5+7)/4=3 tgx=3 x=arctg3+πk k∈Z
V₂ = у (км/ч) скорость мотоциклиста
S = 176 (км ) расстояние
I часть задачи:
tв = 14 - 10 = 4 (ч.) время , через которое участники движения встретились
V сбл. = V₁ + V₂ = S : tв (км/ч) скорость сближения ⇒ I уравнение:
х + у = 176 : 4
II часть задачи :
t₁= 14 - 13 = 1 (час) время в пути велосипедиста
S₁ = V₁t₁ = 1 * x = x (км) расстояние, которое велосипедист проехал
t₂ = 14 - 9 = 5 (часов) время в пути мотоциклиста
S₂ = V₂t₂ = 5y ( км) расстояние, которое мотоциклист проехал
Весь путь : S₁ + S₂ + 8 = S ( км) ⇒ II уравнение системы :
х + 5у + 8 = 176
Система уравнений:
{ x + y = 176 : 4 ⇔ {x + y = 44 ⇔ {x = 44 - y
{ x + 5y + 8 = 176 ⇔ {x +5y = 176 - 8 ⇔ {x + 5y = 168
подстановки:
44 - у + 5у = 168
44 + 4у = 168
4у = 168 - 44
4у = 124
у = 124 : 4
у = 31 (км/ч) скорость мотоциклиста
х = 44 - 31 = 13 (км/ч) скорость велосипедиста
Проверим:
(14-10) * 13 + (14-10) *31 = 52 + 124 = 176 (км) расстояние между пунктами
(14-13) * 13 + (14 - 9) * 31 = 13 + 155 = 168 (км) расстояние, которое успели проехать участники движения
176 - 168 = 8 (км) расстояние, которое осталось проехать до встречи
ответ: 13 км/ч скорость велосипедиста, 31 км/ч скорость мотоциклиста.