В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
cheri228
cheri228
13.05.2021 08:12 •  Алгебра

1. составьте уравнение второй степени, один из корней которого был бы равен сумме, а второй – произведению корней уравнения х2 – 3х – 10 = 0. 2. найдите значение а, при котором уравнение (2а – 5) х2 – 2(а – 1) х + 3 = 0 имеет равные корни? 3. при всех значениях параметра а решите уравнение: а) х2
– 5ах +6а2 = 0, б) х2 + (а – 1) х – а = 0, в) х2 + (1 – 5а) х + 4а2 – а = 0, г) (2а – 2) х2 + (а + 1) х + 1 = 0. 4. при каком значении параметра а сумма квадратов корней уравнения х2 + (а – 1) х – а2 – 1,5 = 0 наибольшая? найдите её.

Показать ответ
Ответ:
MadMax818
MadMax818
04.11.2021 05:16
Если ты не умеешь применять теорему виета, то пиши в комментарях, я научу x²-8x+7 > 0 (х-1)(х-7) > 0 х € (-∞ ; 1 )( 7 ; +∞) x²+3x-54 < 0 (х+9)(х-6) < 0 х € ( -9 ; 6 ) 1/2x²+0,5x-1 > 0 x²+ x – 2 > 0 (х-1)(х+2) > 0 х € (-∞ ; -2 )( 1 ; +∞) 5x²+ 9,5x-1 < 0 10х²+19х–2 < 0 (х-1/10)(х+20/10)< 0 х € (-2 ; 0,1 ) -x²-3x+4> 0 x²+3x–4> 0 (х+4)(х-1)> 0 х € (-∞ ; -4 )( 1 ; +∞) -8x²+17x-2 ≤ 0 8x²-17x+2 ≤ 0 (х-16)(х-1) ≤ 0 х € [ 1 ; 16 ] дальше лень печатать (-∞ ; 3 )( 3 ; +∞) -12 нет корней (-∞ ; +∞) (-∞ ; 0,5 )( 0,5 ; +∞) нет корней
0,0(0 оценок)
Ответ:
temauvarov228
temauvarov228
17.01.2020 10:26

1.

\arcsin x=\mathrm{arctg}\,x

ОДЗ: арксинус определен при x\in[-1;\ 1]

Найдем синус левой и правой части:

\sin\arcsin x=\sin\mathrm{arctg}\,x

x=\dfrac{x}{\sqrt{1+x^2} }

x-\dfrac{x}{\sqrt{1+x^2} } =0

x\left(1-\dfrac{1}{\sqrt{1+x^2} } \right)=0

Уравнение распадается на два. Для первого уравнения получим:

x=0

Решаем второе уравнение:

1-\dfrac{1}{\sqrt{1+x^2} } =0

\dfrac{1}{\sqrt{1+x^2} } =1

\sqrt{1+x^2} =1

1+x^2 =1

x^2 =0

x=0

Таким образом, уравнение имеет единственный корень 0.

ответ: 0

2.

\arcsin x=\mathrm{arcctg}\,x

ОДЗ: арксинус определен при x\in[-1;\ 1]

Найдем синус левой и правой части:

\sin\arcsin x=\sin\mathrm{arcctg}\,x

x=\dfrac{1}{\sqrt{1+x^2} }

Так как в правой части стоит положительная величина, то и левая часть должна быть положительной, то есть x0.

Возведем в квадрат обе части:

x^2=\dfrac{1}{1+x^2 }

x^2(1+x^2)=1

x^4+x^2-1=0

Решим биквадратное уравнение:

D=1-4\cdot1\cdot(-1)=5

x^2\neq \dfrac{-1-\sqrt{5} }{2}

x^2=\dfrac{-1+\sqrt{5} }{2}

Находим х:

x=\pm\sqrt{\dfrac{\sqrt{5}-1 }{2}}

Однако, так как было выявлено ограничение x0, то отрицательный корень не попадает в ответ.

x=\sqrt{\dfrac{\sqrt{5}-1 }{2}}

Оценив значение полученного корня, мы понимаем, что он удовлетворяет исходной ОДЗ:

2=\sqrt{4}

1

0.5

\sqrt{0.5}

ответ: \sqrt{\dfrac{\sqrt{5}-1 }{2}}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота