Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
4х²-2х+3=0
D=(-2)²-4×4×3=4-48=-44 D<0, уравнение не имеет корней
----------------------------------------------------------------------------
5х²+26х=24
5х²+26х-24=0
D=26²-4×5×(-24)=676+480=1156 D>0
х₁=
х₂=
х₁=0,8
х₂=-6
-------------------------------------------------------------------------
3х²-5х=0
D=5²-4×3×0=25-0=25 D>0
х₁=
х₂=
х₁=1,667
х₂=0
--------------------------------------------------------------------
6-2х²=0
-2х²+6=0
D=0²-4×(-2)×6=0+48=48 D>0
х₁=
х₂=
х₁=-1,732
х₂=1,732
------------------------------------------------------------------
t²=35-2t
t²+2t-35=0
D=2²-4×1×(-35)=4+140=144
t₁=
t₂=
t₁=5
t₂=-7
Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.