.1. Реши неравенство и запиши ответ в виде числового интервала: 5x−3<45−3x. 2. Реши неравенство. Запиши ответ в виде интервала. (x+4)2−x2<5x+16. 3. Реши неравенство 2(1−3y)+4(6−y)≤60.
Для любого x из области определения функции f(x) верно следующее: f(x)=-f(-x). Это определение нечётной функции, из этого следует, что область определения должна быть симметричной относительно нуля, ведь каждому x>0 соответствует такой -x<0, что f(x)=-f(-x).
а) [-5;-3)U(3;5) этот промежуток не может являться областью определения т.к. -5 включается, а 5 не включается (для x=-5 не существует -x=5).
б) (-∞;0) U (0; +∞) здесь симметрия соблюдается.
в) [-8; 7] этот промежуток не может явл. обл. опр. т.к. -8 включается, а 8 не включается (для x=-8 не существует -x=8).
г) (-1;1) симметрия соблюдается.
ответ: а) [-5;-3)U(3;5)
в) [-8; 7]
Объяснение:
D(y)=R
Объяснение:
Областью определения функции являются все вещественные числа (множество R=(-∞; +∞)), кроме тех, при которых функция не определено. Область определения функции обозначается через D(y).
Для функции y=x² нет вещественных чисел, при которых выражение x² было бы неопределенным. Поэтому область определения функции y=x² является D(y)=R.
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Для любого x из области определения функции f(x) верно следующее: f(x)=-f(-x). Это определение нечётной функции, из этого следует, что область определения должна быть симметричной относительно нуля, ведь каждому x>0 соответствует такой -x<0, что f(x)=-f(-x).
а) [-5;-3)U(3;5) этот промежуток не может являться областью определения т.к. -5 включается, а 5 не включается (для x=-5 не существует -x=5).
б) (-∞;0) U (0; +∞) здесь симметрия соблюдается.
в) [-8; 7] этот промежуток не может явл. обл. опр. т.к. -8 включается, а 8 не включается (для x=-8 не существует -x=8).
г) (-1;1) симметрия соблюдается.
ответ: а) [-5;-3)U(3;5)
в) [-8; 7]
Объяснение:
D(y)=R
Объяснение:
Областью определения функции являются все вещественные числа (множество R=(-∞; +∞)), кроме тех, при которых функция не определено. Область определения функции обозначается через D(y).
Для функции y=x² нет вещественных чисел, при которых выражение x² было бы неопределенным. Поэтому область определения функции y=x² является D(y)=R.
Записать первые три члена ряда
Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.
Сначала , тогда:
Затем , тогда:
Потом , тогда:
Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:
Обратите внимание на принципиальное отличие от числовой последовательности,
в которой члены не суммируются, а рассматриваются как таковые.
Пример 2
Записать первые три члена ряда
Это пример для самостоятельного решения, ответ в конце урока
Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:
Пример 3
Записать первые три члена ряда
На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:
ответ оставляем в таком виде, полученные члены ряда лучше не упрощать, то есть не выполнять действия: , , . Почему? ответ в виде гораздо проще и удобнее проверять преподавателю.
Иногда встречается обратное задание
Пример 4
Записать сумму в свёрнутом виде с общим членом ряда
Здесь нет какого-то четкого алгоритма решения, закономерность нужно увидеть.
В данном случае:
Для проверки полученный ряд можно «расписать обратно» в развернутом виде.
А вот пример чуть сложнее для самостоятельного решения:
Пример 5
Записать сумму в свёрнутом виде с общим членом ряда
Выполнить проверку, снова записав ряд в развернутом виде
Объяснение:sdg