1. при каком значении a график функции y = ax + 4a – 1 пересекает ось x в точке с абсциссой -3? 2. определите абсциссу точки пересечения графиков функций y = 8 – 4x и y = x + 14 3. постройте график функций: 1) y = |x| 2) y = |x| + x 4. графики функций y = 0,5x – 3, y = -4x + 6 и y = kx
пересекаются в одной точке. найдите значение k. постройте в одной системе координат графики этих функций.
1)
Когда график пересекает ось абсцисс в какой-то точке, координаты этой точки (х;0), все точки лежащие на оси х имеют координату "ноль" по оси у. В итоге можем представить выражение следующим образом:
ответ: 1.
2)
Опять же в точке пересечения графика с абсциссой координаты по оси у это 0, значит:
ответ: 2 и -14.
3)
1) Можно раскрыть модуль по определению и увидеть, что получиться, а можно подумать. Есть какая-то функция, которая преобразует х в у (у=х), и отрицательные и положительные значения. А если взять модуль от х, то функция будет принимать те же значения для отрицательных значениях х, что и для положительных (когда они равны по модулю, пример -2 и 2), получается когда х будет отрицательным значения по оси х будут такими же, проще говоря всё чтобы справа (когда х положительный), отзеркалится влево по оси у. Покажу пример и другие графики внизу. То есть нам надо отразить график у=х как было сказано выше.
2) Тут уже по определению, но и всё просто:
Два линейных уравнения.
4)
Если что-то пересекается в одной точке на координатной плоскости, то у них есть общие точки, то есть существует такая точка M--> (x₀;y₀), которая подходит есть в любой из функций, которые пересекаются в этой точке.
Теперь построение на общей координатной плоскости
Первая функция: Получили точки пересечения с осью у и х соответственно.
Вторая функция:
Третья функция:
ответ: -1.