1.Преобразовать в многочлен: а) (а + 7)2; в) (2b – 1)(2b + 1);
б) (3y – 2x)2; г) (4a + 3b)(4a – 3b).
2. Разложить на множители:
а) b2 – 100; в) 49a2b4 – 100c4;
б) a2 - 6a + 9; г) (x + 1)2 + (x – 1)2.
3. Упростить выражение:
(a – 3)2 + 3a(a + 2).
4. Решите уравнение:
а) (x – 3)2 – x(x + 2,7) = 9;
б) 9y2 – 81 = 0.
y'(x)=4*x^3-4=4(x^3-1)=4(x-1)(x^2+x+1)
Нули: x=1
Рисуем прямую 0x:
y'<0 y'>0
1
убывает возрастает
Значит, x=1 - точка минимума.
Отвечаем на вопросы:
1) Минимум на отрезке [0;2]
Так как x=1 попадает на отрезок, то в этой точке и содержится минимум. y(1)=1^4-4*1+5=2 - минимум на отрезке [0;2]
2) Максимум на отрезке [0;2]
Здесь известно, что при x∈[0;1] функция убывает, а при x∈[1;2] функция возрастает. Это значит, что для нахождения максимума на отрезке нужно сравнить граничные значения и выбрать среди них наибольшее.
y(0)=0^4-4*0+5=5
y(2)=2^4-4*2+5=13
max(y(0), y(2))=13 - максимум на отрезке [0;2]
Проверим аналитически:
уравнение прямой у=kх+b, где (х; у) - точки, через которые она проходит.
составим ур-ие прямой, проходящей через точки А и В
Система:
{-6=2k+b {-6=2k+3-5k <=> {-9=-3k <=> {k=3
{3=5k+b <=> {b=3-5k {b=3-5k {b=-12
Уравнение прямой у=3х-12
Проверим принадлежит ли ей точка С,
1=3*1-12,
1=3-12
1=-9 неверно точка С не принадлежит прямой у=3х-12, а значит,
Данные три точки не лежат на одной прямой