1.Представьте в виде дроби 2.Постройте график функции y=6/x.Какова область определения функции?При каких значениях x функция принимает отрицательные значения 3.Докажите что при всех значениях b зачеркнутое равно этот значок не понял 1 значение выражения не зависит от b 4.При каких значениях а имеет смысл выражения?
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
а) 3,1
б) 4
Объяснение:
а) 6х - 18,6 = 0
Группируем все неизвестные в левой части уравнения, а известные - в правой.
Если неизвестное или известное переносим из одной части уравнения в другую, то меняем знак.
6х оставляем в левой части, а (-18,6) переносим в правую части, при этом меняем знак.
Получаем:
6х = 18,6
Теперь смотри, что не известно.
6х - это 6 умножить на х, где х - неизвестный сомножитель.
Чтобы найти неизвестный сомножитель, надо произведение (18,6) разделить на известных сомножитель:
х = 18,6 : 6
х = 3,1.
Заканчивается решение уравнения ПРОВЕРКОЙ.
Проверка делается так:
1) подставим в первоначальное уравнение вместо х его значение;
2) если уравнение решено правильно, то должно получиться верное равенство, в котором левая часть равна правой части.
Подставляем:
6 · 3,1 - 18,6 = 0
И в исходном уравнении в правой части тоже 0.
Значит, уравнение решено верно.
После этого даём ответ.
ответ: х = 3,1.
б) 3х + 1 = 17 - х
3х + х = 17 - 1
4х = 16
х = 16 : 4
х = 4
ПРОВЕРКА:
левая часть: 3 · 4 + 1 = 13
правая часть: 17 - 4 = 13
левая часть (13) равна правой части (13) - значит, х найден верно.
ответ: х = 4
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.