1. a) (x²-y²)-(x²+2xy+y²)= =(x-y)(x+y)-(x+y)²= =(x+y)(x-y-x-y)=(x+y)(-2y) b) (a²-b²)-(a²-2ab+b²)= =(a-b)(a+b)-(a-b)²= =(a-b)(a+b-a+b)=2b(a-b) 2. пусть х метров- первоначальная длина, ширина и высота дома в форме куба. Тогда (х+2) метров - получившаяся длина, (х-2) метров - получившаяся ширина, тк высоту не меняли, то она осталась х метров. Объём куба находится как х^3, а параллелепипеда как х(х+2)(х-2). Составим и решим уравнение. х^3-х(х+2)(х-2)=36 x^3-x(x²-4)=36 x^3-x^3+4x=36 4x=36 x=9(метров) ответ: 9метров значок ^ обозначает в степени
1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°
=(x-y)(x+y)-(x+y)²=
=(x+y)(x-y-x-y)=(x+y)(-2y)
b) (a²-b²)-(a²-2ab+b²)=
=(a-b)(a+b)-(a-b)²=
=(a-b)(a+b-a+b)=2b(a-b)
2. пусть х метров- первоначальная длина, ширина и высота дома в форме куба. Тогда (х+2) метров - получившаяся длина, (х-2) метров - получившаяся ширина, тк высоту не меняли, то она осталась х метров. Объём куба находится как х^3, а параллелепипеда как
х(х+2)(х-2). Составим и решим уравнение.
х^3-х(х+2)(х-2)=36
x^3-x(x²-4)=36
x^3-x^3+4x=36
4x=36
x=9(метров)
ответ: 9метров
значок ^ обозначает в степени