1. По заданному чертежу (Рисунок 1) ответьте на следующие вопросы а) Определите координаты вершины параболы б) Определите ось симметрии в) Определите нули функции г) Определите область значений функции д) Определите при каких значениях х функция положительна (у>0) е) Определите при каких значениях х функция положительна (у<0) [6]
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2x
Знаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1
Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1
Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.
Знаходження похідної:
f'(x) = d/dx (2x - x²)= 2 - 2xЗнаходимо точки екстремуму:
f'(x) = 02 - 2x = 02x = 2x = 1Таким чином, точка екстремуму x = 1.
Досліджуємо знак похідної та визначаємо проміжки монотонності:
3.1. Розглянемо інтервал (-∞, 1):
Для x < 1:
f'(x) = 2 - 2x < 0 (знак "менше нуля")
Таким чином, на цьому інтервалі функція f(x) спадає.
3.2. Розглянемо інтервал (1, +∞):
Для x > 1:
f'(x) = 2 - 2x > 0 (знак "більше нуля")
Таким чином, на цьому інтервалі функція f(x) зростає.
Знаходимо значення функції f(x) у точці екстремуму:
f(1) = 2(1) - (1)²= 2 - 1= 1Таким чином, екстремум функції f(x) в точці (1, 1).
Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:
Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).Ви маєте рівняння: 2ав + 10в - 2а + 10 = 2в(а-5) - 2(a-5).
Спочатку давайте спростимо це рівняння.
Ліва сторона:
2ав + 10в - 2а + 10 = 2ав + 10в - 2а + 10.
Права сторона:
2в(а-5) - 2(a-5) = 2ва - 10в - 2а + 10.
Тепер об'єднаємо подібні члени:
Ліва сторона:
2ав + 10в - 2а + 10.
Права сторона:
2ва - 10в - 2а + 10.
Тепер ми бачимо, що ліва сторона рівняння дорівнює правій стороні, тому:
2ав + 10в - 2а + 10 = 2ва - 10в - 2а + 10.
Знаки "+10" та "-10" знімаються:
2ав + 10в - 2а = 2ва - 10в - 2а.
Перенесемо всі члени з "а" на одну сторону рівняння, а всі члени з "в" на іншу сторону:
2ав - 2ва = 10в - 10в - 2а.
Виділимо спільні члени в кожній групі:
2ав - 2ва = 0.
Тепер факторизуємо це рівняння:
2в(a - а) = 0.
Так як (a - а) дорівнює нулю, ми отримуємо:
2в * 0 = 0.
Отже, множники цього рівняння є: 2в та 0.