В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
kovalenkodenis6
kovalenkodenis6
11.08.2022 14:41 •  Алгебра

(1-ое задание есть на фотке с ним нужна иии 2. Плиты для садовых дорожек продаются в упаковках по 3 штуки. Сколько упаковок плит понадобилось, чтобы выложить все дорожки и площадку вокруг дома?
3. Найдите площадь, занятую плодово-ягодными кустарниками. ответ дайте в квадратных метрах.
4. Найдите периметр огорода для выращивания овощей. ответ дайте в метрах


(1-ое задание есть на фотке с ним нужна иии 2. Плиты для садовых дорожек продаются в упаковках по 3

Показать ответ
Ответ:
VaneK12354
VaneK12354
19.08.2021 01:28

поскольку при каждом броске возможны только 2 исхода (орел или решка), то при 9 бросках возможны 2⁹ исходов. Из них количество исходов  ровно с 5 выпадениями орла равно 9!/[5!(9-5)!], следовательно вероятность выпадения орла ровно 5 раз равна {9!/[5!(9-5)!]}/2⁹

Повторив аналогичные рассуждения, получим вероятность выпадения орла ровно 2 раза {9!/[2!(9-2)!]}/2⁹

найдем их отношение  [{9!/[5!(9-5)!]}/2⁹]/[{9!/[2!(9-2)!]}/2⁹]=[2!(9-2)!]/[5!(9-5)!]= (1*2*1*2*3*4*5*6*7)/(1*2*3*4*5*1*2*3*4)=(6*7)/(3*4)=3.5

вероятность выпадения  орлов ровно 5 раз в 3,5 раза выше, чем вероятность выпадения ровно 2 раза

0,0(0 оценок)
Ответ:
LoveSammer
LoveSammer
14.03.2022 04:59
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков:
∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1

Далее преобразуем слагаемые в разности косинусов:
sin(a + k*(b-a)/n) = sin(a + k*(b-a)/n) * sin( (b-a)/2n ) / sin( (b-a)/2n ) = 1/(2sin((b-a)/2n)) * [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)]

Здесь были применены формулы
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y))
Где x = a + k*(b-a)/n, y = (b-a)/2n

y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.

Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду
(b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1

Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.

∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)] = cos(a - 1/2 (b-a)/n) - cos(a + (n - 1/2)*(b-a)/n)

При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)

Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1

Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота