1) Найти угловой коэффициент касательной к графику функции и записать уравнение касательной в точке х = 1 f(x)=(x+3)/(x+1) 2). Материальная точка движется по закону S(t)= t3 - 12 t2 - 3 Через какое время материальная точка остановится? 3).Тело движется по закону: S(t)=5 t3 - 14 t2 - 12t. Через какое время ускорение станет равным 2 м/с2
тогда его средняя скорость составляла 325/t км/ч.
40 мин = 2/3 ч
По новому расписанию время автобуса составляет (t- 2/3) ч,
а средняя скорость равна 325/(t- 2/3) км/ч.
По условию задачи, скорость движения по новому расписанию
на 10 км/ч больше скорости автобуса по старому расписанию.
Составим уравнение:
325/(t- 2/3) - 325/t =10
325/((3t-2)/3) -325/t =10
975/(3t-2) - 325/t = 10 |*t(3t-2)
975t - 975t + 650 = 10t(3t-2)
30t²-20t-650=0
3t²-2t-65=0
D=(-2)²-4*3*(-65)=784=28²
t₁=(2+28)/6=5
t₂=(2-28)/6=-4.1/3<0 (лишний корень)
t=5 ч - время автобуса по старому расписанию
325/5= 65 км/ч - скорость автобуса согласно старому расписанию
65+10=75 км/ч - скорость автобуса согласно новому расписанию
ответ: 75 км/ч
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки (0;0) удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т. р=-1