1) cosx≥0 - так как под корнем четной степени. sinx≥0, так как иначе Значит, решения могут быть только в I квадранте (включая границы). 2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0. 3) Покажем, что других корней быть не может. Найдем производную функции
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2), а "вторая часть"
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2. Это значит, что производная положительна до некого x_max на [0;x_max) и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2] Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1. Следовательно, других корней исходного уравнения нет.
sinx≥0, так как иначе
Значит, решения могут быть только в I квадранте (включая границы).
2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0.
3) Покажем, что других корней быть не может.
Найдем производную функции
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2),
а "вторая часть"
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2.
Это значит, что производная положительна до некого x_max на [0;x_max)
и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2]
Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1.
Следовательно, других корней исходного уравнения нет.
а) Первые 4 члена последовательности.
y(1) = (3*1+10)/(3-4*1) = (3+10)/(3-4) = 13/(-1) = -13
y(2) = (3*2+10)/(3-4*2) = (6+10)/(3-8) = 16/(-5) = -3,2
y(3) = (3*3+10)/(3-4*3) = (9+10)/(3-12) = -19/9
y(4) = (3*4+10)/(3-4*4) = (12+10)/(3-16) = -22/13
б) Чтобы найти, начиная с какого числа все члены последовательности будут больше -1, нужно составить неравенство.
(3n + 10)/(3 - 4n) > -1
(3n + 10)/(3 - 4n) + 1 > 0
(3n + 10 + 3 - 4n)/(3 - 4n) > 0
(13 - n)/(3 - 4n) > 0
Поменяем знаки в числителе и в знаменателе одновременно, дробь от этого не изменится.
(n - 13)/(4n - 3) > 0
По методу интервалов
n ∈ (-oo; 3/4) U (13; +oo)
Так как 13 не входит в промежуток, то
ОТВЕТ: Начиная с n = 14