1) На кольцевой дороге расположено четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б - 210 км, между А и В - 126 км, между В и Г - 150 км, между Г и А - 144 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.
2) Найдите трехзначное число, которое делится на каждую свою цифру и все цифры которого различны, которое больше чем 310 и меньше чем 360.
В ответе укажите какое-нибудь одно такое число.
Формализуем условие задачи. Пусть n солдат расставлены в k полных шеренг, тогда n=10k. Пусть если солдат расставить по 11 человек, в последней шеренге окажется m человек. Тогда n=11(k минус 3) плюс m. Наконец, пусть при расстановке в шеренги по 7 человек в последней будет l человек. Тогда n=7(k плюс 9) плюс l. Cоставим систему и решим её:
система выражений новая строка n=10k, новая строка n=11(k минус 3) плюс m, новая строка n=7(k плюс 9) плюс l, новая строка m меньше 11, новая строка l меньше 7 конец системы . равносильно система выражений k=33 минус m,k= дробь: числитель: 63 плюс l, знаменатель: 3 конец дроби ,m меньше 11, l меньше 7 конец системы . равносильно система выражений \6l плюс 3m=36,m меньше 11, l меньше 7 конец системы .
Объяснение:
лучший ответ
3.1
-2х²+3х+2=0;
2х²-3х-2=0;
х=(3±√(9+16))/4=(3±5)/4 х=8/4=2 ;х=-1/2
Решим неравенство методом интервалов.
-1/22
- + -
х∈(-∞;-1/2)∪(2;+∞)
наибольшее отрицательное можно найти если среди целых, то -1, наименьшее положительное, если среди целых, то 3.
иначе нет. либо, если бы было условие нестрогого неравенства.
3.2
пусть первоначальная скорость была х, тогда учитывая, что 20 мин. =(1/3)ч., получим уравнение
40/х-40/(х-10)=1/3
х≠0; х≠10
3*40*(х-х+10)=х²-10х
х²-10х-1200=0 По Виету х= -30 - не подходит по смыслу задачи.
х=40
ответ 40 км/ч