1. между какими соседними натуральными числами заключено число:
а) ; б) ?
2. выражение: [2
3. представьте числа в виде и расположите их в порядке возрастания:
6 ; 3 ; 2 [3
4. выполните действия: ( [3
5. a) при каких значениях х имеет смысл выражение ?
б) постройте график функции y = .
в) покажите на графике значения х при у =1,8; 2,3. запишите приближенные значения х. [4
Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).
Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.
Перед тем, как перейти к алгоритму симплекс метода, несколько определений.
Всякое неотрицательное решение системы ограничений называется допустимым решением.
Пусть имеется система m ограничений с n переменными (m < n).
Допустимым базисным решением является решение, содержащее m неотрицательных основных (базисных) переменных и n - m неосновных. (небазисных, или свободных) переменных. Неосновные переменные в базисном решении равны нулю, основные же переменные, как правило, отличны от нуля, то есть являются положительными числами.
Любые m переменных системы m линейных уравнений с n переменными называются основными, если определитель из коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).
Алгоритм симплекс метода
Шаг 1. Привести задачу линейного программирования к канонической форме. Для этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.
Важные условия
Если допустимое базисное решение даёт оптимум линейной формы (критерий оптимальности выполнен), а в выражении линейной формы через неосновные переменные отсутствует хотя бы одна из них, то полученное оптимальное решение - не единственное.
Если в выражении линейной формы имеется неосновная переменная с отрицательным коэффициентом в случае её максимизации (с положительным - в случае минимизации), а во все уравнения системы ограничений этого шага указанная переменная входит также с отрицательными коэффициентами или отсутствует, то линейная форма не ограничена при данной системе ограничений. В этом случае её максимальное (минимальное) значение записывают в виде .
На сайте есть Онлайн калькулятор решения задач линейного программирования симплекс-методом.
В случайном порядке было отобрано 25 студентов экономического факультета и выписан их возраст:
19 17 22 18 17
17 23 21 18 19
17 22 18 18 18
20 17 19 21 17
21 17 18 23 18
Составить статистическое распределение студентов по возрасту. Построить полигон и кумуляту. Найти эмпирическую функцию распределения и дать ее графическое изображение.
Решение. 1. По исходным данным составим статистическое распределение выборки.
Таблица 1.1.
xi
mi
2. Вычислим относительные частоты, и результаты вычислений внесем в третий столбец таблицы 1.2. Относительные частоты находим по формуле
= .
В данном случае объем выборки n=25. Относительные частоты: =7/25=0,28; = 0,28; = 3/25=0,12; = 1/25=0,04; = 3/25=0,12; = =2/25=0,08.
=0,28 + 0,28 + 0,12 + 0,04 + 0,12 + 0,08 + 0,08 = 1.
3. Вычислим накопленные частоты и результаты внесем в четвертый столбец таблицы 1.2.
mx1= m1=7; mx2= m1 + m2=7 + 7=14; mx3= m1 + m2 + m3 =7 + 7 +3=17; mx4= m1 + m2 + m3 + m4=7 + 7 + 3 + 1=18; mx5=7 + 7 + 3 + 1 + 3 = 21; mx6=21 + 2 = 23; mx7= 25.
Вычисленные относительные накопленные частоты указаны в пятом столбце таблицы 1.2.
Таблица 1.2.
варианты xi частоты mi относительные частоты, накопленные частоты, mxi относительные накопленные частоты
0,28 0,28
0,28 0,56
0,12 0,68
0,04 0,72
0,12 0,84
0,08 0,92
0,08
4. Для построения полигона распределения отложим на оси абсцисс варианты xi , на оси ординат – частоты mi.
Рис. 1.1.
Для построения кумуляты отложим на оси абсцисс варианты xi, на оси ординат – накопленные частоты.
Рис. 1.2.
5. Найдем эмпирическую функцию F*(x) по данному распределению выборки.
Объем выборки n=25.
Наименьшая варианта х1=17, следовательно F*(x)=0, при х≤17. Значение х<18, а именно х1=17 наблюдалось 7 раз, следовательно F*(x)=7/25=0,28, при 17<х≤18. Значения х<19, а именно х1=17, х1=18 наблюдались 7+7=14 раз, следовательно F*(x)=14/25=0,56, при 18<х≤19. Аналогично, F*(x)=17/25=0,68 при 19<х≤20; F*(x)=18/25=0,72, при 20<х≤21; F*(x)=21/25=0,84, при 21<х≤22; F*(x)=23/25=0,92, при 22<х≤23. Так как х7=23 – наибольшая варианта, следовательно F*(x)=1, при х >23.
Эмпирическая функция имеет вид
F*(x)=
Построим график этой функции
Рис. 1.3.
Пример 2. Наблюдения за жирностью молока у 50 коров дали следующие результаты (в %).
3,86 3,84 3,69 4,00 3,81 3,73 4,14 3,76
4,06 3,94 3,76 3,46 4,02 3,52 3,72
3,67 3,98 3,71 4,08 4,17 3,89 4,33
3,97 3,57 3,94 3,88 3,72 3,92 3,82
3,61 3,87 3,82 4,01 4,09 4,18 4,03
3,96 4,07 4,16 3,93 3,78 4,26 3,26
4,04 3,99 3,76 3,71 4,02 4,03 3,91
По этим данным построить интервальный вариационный ряд с равными интервалами и изобразить его графически (построить полигон, гистограмму, кумуляту).
Решение. 1. Выполним разбиение данного ряда на интервалы,
n=50, xmax=4,33; xmin=3,46.
Число интервалов к=1 + 3,322lg50=1 + 3,322·1,7=6,6474≈7;
длина каждого интервала h=
за начало первого интервала примем величину хнач=хmin – 0,5h=3,46 – 0,5·0,14=3,46 – 0,07≈3,4.
Таблица 1.3.
жирность молока, интервал середина интервала, хi частота, mi относительная частота, накопленная частота, mxi относительная накопленная частота
3,40- 3,54 3,47 2/50=0,04 0,04
3,54-3,68 3,61 4/50=0,08 6 (2+4) 0,12
3,68-3,82 3,75 13/50=0,26 19 (6+13) 0,38
3,82-3,96 3,89 11/50=0,22 30 (19+11) 0,60
3,96-4,10 4,03 14/50=0,28 44 (30+14) 0,88
4,10-4,24 4,17 4/50=0,08 48 (44+4) 0,96
4,24-4,38 4,31 2/50=0,04 50 (48+2)
2. Для построения гистограммы откладываем на оси абсцисс интервалы длинной h=0,14. На этих интервалах построим прямоугольники высотой, пропорциональной частоте. Для построения полигона середины верхних оснований соединим ломаной линией.
Рис. 1.4.
Для построения кумуляты на оси абсцисс отложим середины интервалов, а на оси ординат – накопленные частоты.
Рис. 1.5.
Объяснение: