В решении задачи используем очень сложную формулу (шучу):
где U - скорость тела, S - расстояние, которое тело, T - время, за которое тело преодолело расстояние.
2 тела (автомобиля) выехали из одной точки в противоположные стороны.
Первый автомобиль преодолел за 5 часов S1=U1*t, или S1 =5x (потому что х - скорость первого автомобиля, а требуемое время - 5 часов (S1 - расстояние, которое преодолел первый автомобиль, а U1 - скорость первого автомобиля))
Второй автомобиль преодолел за 5 часов S2=U2*t, или S2 =5(x+15) (потому что скорость первого автомобиля на 15 больше первого, у первого - х, значит у второго - 15+х, а требуемое время - 5 часов (S2 - расстояние, которое преодолел второй автомобиль, а U2 - скорость второго автомобиля))
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
S = 5(15+2x)
Объяснение:
В решении задачи используем очень сложную формулу (шучу):
где U - скорость тела, S - расстояние, которое тело, T - время, за которое тело преодолело расстояние.
2 тела (автомобиля) выехали из одной точки в противоположные стороны.
Первый автомобиль преодолел за 5 часов S1=U1*t, или S1 =5x (потому что х - скорость первого автомобиля, а требуемое время - 5 часов (S1 - расстояние, которое преодолел первый автомобиль, а U1 - скорость первого автомобиля))
Второй автомобиль преодолел за 5 часов S2=U2*t, или S2 =5(x+15) (потому что скорость первого автомобиля на 15 больше первого, у первого - х, значит у второго - 15+х, а требуемое время - 5 часов (S2 - расстояние, которое преодолел второй автомобиль, а U2 - скорость второго автомобиля))
Складываем получившиеся выражения:
S = S1 + S2 = 5x + 5(x+15) = 5(x+15+x) = 5(15+2x)
(-∞; 2,5) и (2,5; +∞)
Объяснение:
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
(-∞; 2,5) и (2,5; +∞).
При x∈(-∞; 2,5) функция отрицательна в силу:
f(0)=2·0-5= -5<0,
а при x∈(2,5; +∞) функция положительна в силу:
f(10)=2·10-5= 15>0.