1.
6² = 36, 7² = 49, значит:
√38 ∈ [6; 7],
2.
2√5 ⇒ 5√2 ⇒ 3√6 ⇒ 4√10,
3.
10 ⇒ 3√11 ⇒ 7√2,
5.
√15 - наименьшее из чисел,
6.
а)
√243 / √3 = √(243/3) = √81 = 9,
б)
7√75 / √3 = 7 * √(75/3) = 7 * √25 = 7 * 5 = 35,
в)
√1000 * √0,064 = √(1000 * 0,064) = √64 = 8,
г)
√(5*12) * √30 = √(5 * 12 * 30) = √(5 * 4*3 * 2*3*5) =
= √(5*5 * 3*3 * 4 * 2) = 5 * 3 * 2 * √2 = 30√2,
д)
√(55*65) / (13*11) = √(55*65 / 13*11) = √(5*11*5*13 / 13*11) = √(5*5) = 5,
е)
(√72 - √8) * √8 = √72 * √8 - √8 * √8 = √(72 * 8) - 8 =
= √(9*8 * 8) - 8 = 3 * 8 - 8 = 24 * 8 = 16,
8.
(√х - 3)(√х + 3) = х - 9,
121 - 9 = 112,
(√2а - √3в)(√2а + √3в) = 2а - 3в,
2*45 - 3*15 = 90 - 45 = 45,
(√3х + 4)² = 3х + 8√3х + 16,
3*1 + 8√3 + 16 = 3 + 8√3 + 16 = 19 + 8√3,
(2√а + 9√в)² - 36√ав = 4а + 36√ав + 81в - 36√ав = 4а + 81в,
4 * 1/2 + 81 * 2 = 2 + 162 = 164
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок
1.
6² = 36, 7² = 49, значит:
√38 ∈ [6; 7],
2.
2√5 ⇒ 5√2 ⇒ 3√6 ⇒ 4√10,
3.
10 ⇒ 3√11 ⇒ 7√2,
5.
√15 - наименьшее из чисел,
6.
а)
√243 / √3 = √(243/3) = √81 = 9,
б)
7√75 / √3 = 7 * √(75/3) = 7 * √25 = 7 * 5 = 35,
в)
√1000 * √0,064 = √(1000 * 0,064) = √64 = 8,
г)
√(5*12) * √30 = √(5 * 12 * 30) = √(5 * 4*3 * 2*3*5) =
= √(5*5 * 3*3 * 4 * 2) = 5 * 3 * 2 * √2 = 30√2,
д)
√(55*65) / (13*11) = √(55*65 / 13*11) = √(5*11*5*13 / 13*11) = √(5*5) = 5,
е)
(√72 - √8) * √8 = √72 * √8 - √8 * √8 = √(72 * 8) - 8 =
= √(9*8 * 8) - 8 = 3 * 8 - 8 = 24 * 8 = 16,
8.
а)
(√х - 3)(√х + 3) = х - 9,
121 - 9 = 112,
б)
(√2а - √3в)(√2а + √3в) = 2а - 3в,
2*45 - 3*15 = 90 - 45 = 45,
в)
(√3х + 4)² = 3х + 8√3х + 16,
3*1 + 8√3 + 16 = 3 + 8√3 + 16 = 19 + 8√3,
г)
(2√а + 9√в)² - 36√ав = 4а + 36√ав + 81в - 36√ав = 4а + 81в,
4 * 1/2 + 81 * 2 = 2 + 162 = 164
ВG=51см
AH=54 см
2,22 м прута нужно для изготовления заказа
Объяснение:
В решении используем теорему Фалеса и теорему: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
EF=FG=GH=5, а DС=СВ=ВА (по т Фалеса) ⇒
ЕН=3*5=15 см
AD=3*3=9 см
Проведем прямую, ║АD и точки пересечения с АH, BG и CF назовем соответственно А1, B1 и С1
т.к. прямая А1Е ║AD⇒CC1=ВВ1=АА1=45
⇒C1F=48-45=3
при пересечении двух прямых секущей соответственные углы равны ⇒ΔC1EF, ΔB1EG и ΔА1ЕН подобны.
Рассмотрим ΔB1EG: т.к. C1F делит стороны B1E и GE пополам (B1C1=C1E=GF=FE) ⇒С1F - средняя линия ΔB1EG⇒ В1G=C1F*2=6
Тогда BG=45+6=51 см
Найдем коэффициент подобия ΔС1EF и А1EH:
EH/EF=15/5=3⇒
А1Н=3*3=9 ⇒
АН=45+9=54 см
Итак, длина прута =сумме длин всех отрезков:
AD=9
EH=15
DE=45
CF=48
BG=51
AH=54
9+15+45+48+51+54=222 см или 2,22 м или 2 м 22 см.
Мастер в школе хорошо освоил геометрию.
см рисунок